Advertisement

Journal of Materials Science

, Volume 42, Issue 10, pp 3388–3397 | Cite as

The processing of ultrafine-grained materials through the application of severe plastic deformation

  • Terence G. Langdon
Article

Abstract

The application of severe plastic deformation (SPD) to bulk metals provides the opportunity of achieving grain sizes in the submicrometer and nanometer range. Several different SPD processing techniques are now available including Equal-Channel Angular Pressing (ECAP), High-Pressure Torsion (HPT) and Accumulative Roll-Bonding (ARB). This paper examines the principles of grain refinement using ECAP and gives examples of the advantageous properties that may be achieved including increased strength at ambient temperatures and a superplastic forming capability at elevated temperatures.

Keywords

Severe Plastic Deformation Select Area Electron Diffraction Pattern Channel Angle ECAP Processing Superplastic Elongation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Presentation of this paper at the 5th Brazilian Materials Research Society Meeting in Florianópolis in October 2006 was made possible through support from SBPMat (Sociedade Brasileira de Pesquisa em Materiais). I am grateful to Prof. Levi Bueno (Universidade Federal de São Carlos) for making all travel arrangements within Brazil. This work was supported by the National Science Foundation of the United States under Grant No. DMR-0243331 and the U.S. Army Research Office under Grant No. W911NF-05-1-0046.

References

  1. 1.
    Hall EO (1951) Proc Roy Soc B 54:747Google Scholar
  2. 2.
    Petch NJ (1953) J Iron Steel Inst 174:25Google Scholar
  3. 3.
    Langdon TG (1994) Acta Metall Mater 42:2437CrossRefGoogle Scholar
  4. 4.
    Zhu YT, Lowe TC, Langdon TG (2004) Scripta Mater 51:825CrossRefGoogle Scholar
  5. 5.
    Gleiter H (1989) Prog Mater Sci 33:223CrossRefGoogle Scholar
  6. 6.
    Koch CC, Cho YS (1992) Nanostruct Mater 1:207CrossRefGoogle Scholar
  7. 7.
    Wang JT (2006) Mater Sci Forum 503–504:363Google Scholar
  8. 8.
    Srinivasan S, Ranganathan S (2004) India’s legendary wootz steel: an advanced material of the ancient world. National Institute of Advanced Studies and Indian Institute of Science, Bangalore, IndiaGoogle Scholar
  9. 9.
    Sherby OD, Wadsworth J (2001) J Mater Proc Technol 117:347CrossRefGoogle Scholar
  10. 10.
    Valiev RZ, Krasilnikov NA, Tsenev NK (1991) Mater Sci Eng A137:35Google Scholar
  11. 11.
    Valiev RZ, Korznikov AV, Mulyukov RR (1993) Mater Sci Eng A168:141Google Scholar
  12. 12.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58(4):33CrossRefGoogle Scholar
  13. 13.
    Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Russian Metall 1:99Google Scholar
  14. 14.
    Smirnova NA, Levit VI, Pilyugin VI, Kuznetsov RI, Davydova LS, Sazonova VA (1986) Fiz Metal Metalloved 61:1170Google Scholar
  15. 15.
    Salishchev GA, Valiahmetov OR, Galeev RM (1993) J Mater Sci 28:2898, DOI: 10.1007/BF00354692CrossRefGoogle Scholar
  16. 16.
    Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Scripta Mater 39:1221CrossRefGoogle Scholar
  17. 17.
    Varyutkhin VN, Beygelzimer YY, Synkov S, Orlov D (2006) Mater Sci Forum 503–504:335Google Scholar
  18. 18.
    Horita Z, Fujinami T, Langdon TG (2001) Mater Sci Eng A318:34Google Scholar
  19. 19.
    Srinivasan R, Cherukuri B, Chaudhury PK (2006) Mater Sci Forum 503–504:371CrossRefGoogle Scholar
  20. 20.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  21. 21.
    Berbon PB, Furukawa M, Horita Z, Nemoto M, Langdon TG (1999) Metall Mater Trans 30A:1989CrossRefGoogle Scholar
  22. 22.
    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scripta Mater 35:143CrossRefGoogle Scholar
  23. 23.
    Segal VM (1995) Mater Sci Eng A197:157Google Scholar
  24. 24.
    Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A257:328Google Scholar
  25. 25.
    Furukawa M, Horita Z, Nemoto M, Langdon TG (2001) J Mater Sci 36:2835, DOI: 10.1023/A:1017932417043CrossRefGoogle Scholar
  26. 26.
    Furukawa M, Horita Z, Langdon TG (2002) Mater Sci Eng A332:97Google Scholar
  27. 27.
    Oh-ishi K, Horita Z, Furukawa M, Nemoto M, Langdon TG (1998) Metall Mater Trans 29A:2011CrossRefGoogle Scholar
  28. 28.
    Nakashima K, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:1589CrossRefGoogle Scholar
  29. 29.
    Fukuda Y, Oh-ishi K, Furukawa M, Horita Z, Langdon TG (2004) Acta Mater 52:1387CrossRefGoogle Scholar
  30. 30.
    Furukawa M, Kawasaki Y, Miyahara Y, Horita Z, Langdon TG (2005) Mater Sci Eng A410–411:194Google Scholar
  31. 31.
    Fukuda Y, Oh-ishi K, Furukawa M, Horita Z, Langdon TG (2006) Mater Sci Eng A420:79Google Scholar
  32. 32.
    Miyamoto H, Erb U, Koyama T, Mimaki T, Vinogradov A, Hashimoto S (2004) Phil Mag Lett 84:235CrossRefGoogle Scholar
  33. 33.
    Miyamoto H, Fushimi J, Mimaki T, Vinogradov A, Hashimoto S (2005) Mater Sci Eng A405:221Google Scholar
  34. 34.
    Furukawa M, Fukuda Y, Oh-ishi K, Horita Z, Langdon TG (2006) Mater Sci Forum 503–504:113Google Scholar
  35. 35.
    Miyamoto H, Fushimi J, Mimaki T, Vinogradov A, Hashimoto S (2006) Mater Sci Forum 503–504:799Google Scholar
  36. 36.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1997) Acta Mater 45:4733CrossRefGoogle Scholar
  37. 37.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317CrossRefGoogle Scholar
  38. 38.
    Terhune SD, Swisher DL, Oh-ishi K, Horita Z, Langdon TG, McNelley TR (2002) Metall Mater Trans 33A:2173CrossRefGoogle Scholar
  39. 39.
    Salem AA, Langdon TG, McNelley TR, Kalidindi SR, Semiatin SL (2006) Metall Mater Trans 37A:2879CrossRefGoogle Scholar
  40. 40.
    Semiatin SL, Berbon PB, Langdon TG (2001) Scripta Mater 44:135CrossRefGoogle Scholar
  41. 41.
    Langdon TG (2007) Mater Sci Eng (in press)Google Scholar
  42. 42.
    Kuhlmann-Wilsdorf D (1989) Mater Sci Eng A113:1Google Scholar
  43. 43.
    Kuhlmann-Wilsdorf D (1997) Scripta Mater 36:173CrossRefGoogle Scholar
  44. 44.
    Horita Z, Fujinami T, Nemoto M, Langdon TG (2000) Metall Mater Trans 31A:691CrossRefGoogle Scholar
  45. 45.
    Ma Y, Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) Mater Trans JIM 37:336Google Scholar
  46. 46.
    Hasegawa H, Komura S, Utsunomiya A, Horita Z, Furukawa M, Nemoto M, Langdon TG (1999) Mater Sci Eng A265:188Google Scholar
  47. 47.
    Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG (1997) Scripta Mater 37:1945CrossRefGoogle Scholar
  48. 48.
    Higashi K, Mabuchi M, Langdon TG (1996) ISIJ Intl 36:1423Google Scholar
  49. 49.
    Komura S, Horita Z, Furukawa M, Nemoto M, Langdon TG (2001) Metall Mater Trans 32A:707Google Scholar
  50. 50.
    Lee S, Berbon PB, Furukawa M, Horita Z, Nemoto M, Tsenev NK, Valiev RZ, Langdon TG (1999) Mater Sci Eng A272:63Google Scholar
  51. 51.
    Horita Z, Furukawa M, Nemoto M, Barnes AJ, Langdon TG (2000) Acta Mater 48:3633CrossRefGoogle Scholar
  52. 52.
    Cornfield GC, Johnson RH (1970) Intl J Mech Sci 12:479CrossRefGoogle Scholar
  53. 53.
    Semenova IP, Raab GI, Saitova LR, Valiev RZ (2004) Mater Sci Eng A387–389:805Google Scholar
  54. 54.
    Stolyarov VV, Gunderov DV, Popov AG, Puzanova TZ, Raab GI, Yavari AR, Valiev RZ (2002) J Magnetism Magnetic Mater 242–245:1399CrossRefGoogle Scholar
  55. 55.
    Furukawa M, Ma Y, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1998) Mater Sci Eng A241:122Google Scholar
  56. 56.
    Huang Y, Langdon TG (2002) J Mater Sci 37:4993, DOI: 10.1023/A:1021071228521CrossRefGoogle Scholar
  57. 57.
    Kumar P, Xu C, Langdon TG (2005) Mater Sci Eng A410–411:447Google Scholar
  58. 58.
    Valiev RZ, Islamgaliev RK, Kuzmina NF, Li Y, Langdon TG (1999) Scripta Mater 40:117Google Scholar
  59. 59.
    Li Y, Langdon TG (2000) J Mater Sci 35:1201, DOI: 10.1023/A:1004740504619CrossRefGoogle Scholar
  60. 60.
    Kawasaki M, Huang Y, Xu C, Furukawa M, Horita Z, Langdon TG (2005) Mater Sci Eng A410–411:402Google Scholar
  61. 61.
    Xu C, Furukawa M, Horita Z, Langdon TG (2005) Acta Mater 53:749CrossRefGoogle Scholar
  62. 62.
    Xu C, Furukawa M, Horita Z, Langdon TG (2003) Acta Mater 51:6139CrossRefGoogle Scholar
  63. 63.
    Gao N, Starink MJ, Furukawa M, Horita Z, Xu C, Langdon TG (2005) Mater Sci Eng A410–411:303Google Scholar
  64. 64.
    Kawasaki M, Langdon TG (2007) J Mater Sci 42:1782CrossRefGoogle Scholar
  65. 65.
    Langdon TG (1982) Metal Sci 16:175Google Scholar
  66. 66.
    Kawasaki M, Xu C, Langdon TG (2005) Acta Mater 53:5353CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Aerospace & Mechanical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Materials Research Group, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations