Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6779–6786 | Cite as

A study on the synthesis and characterisation of nanocrystalline transition metal oxynitrides

  • Yuhong Wang
  • Edward Lesterb
  • Duncan H. Gregory
Article

Abstract

A different processing route to bimetallic oxynitrides has been developed using oxide precursors generated from coprecipitation of ethanolic solutions of the relevant metal chlorides. The nitridation of the mixed-metal precursors yields nanocrystalline oxynitrides. Representative group 5–group 6 transition metal oxynitrides, M1−x M′ x (O,N) (M = Nb, Ta; M′ = Mo, W) have been prepared and characterised by powder X-ray diffraction (PXD), scanning electron microscopy with energy dispersive analysis by X-rays (SEM/EDAX), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), BET surface area measurements and SQUID magnetometry. The mixed-metal oxynitrides form rock salt structures (a ∼4.3 Å) with disordered distributions of both cations and anions. The purity, particle size and surface area of materials are significantly dependent on nitridation temperature.

Keywords

Oxynitrides Oxide Precursor Nitrided Material Nitridation Reaction Transition Metal Nitrides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to Ms N Bock and Dr FJ Allison for assistance with SEM and TEM measurements. DHG and WY would like to thank the Royal Society for awarding WY a Sino-British Fellowship and for funding this work. DHG would also like to thank the EPSRC for the award of an Advanced Research Fellowship.

References

  1. 1.
    Disalvo FJ (1990) Science 247:649CrossRefGoogle Scholar
  2. 2.
    Kerlau M, Merdrignac-Conanec O, Reichel P, Barsan N, Weimar U (2006) Sens Actuators B Chem 115:4CrossRefGoogle Scholar
  3. 3.
    Florea M, Silvy RP, Grange P (2003) Appl Catal A Gen 255:289CrossRefGoogle Scholar
  4. 4.
    Jansen M, Letschert HP (2000) Nature 404:980CrossRefGoogle Scholar
  5. 5.
    Fabregas RP, Marin JI, Cascales C, Puche RS (2007) J Solid State Chem 180:92CrossRefGoogle Scholar
  6. 6.
    Gajbhiye NS, Ningthoujam RS (2006) Mater Res Bull 41:1612CrossRefGoogle Scholar
  7. 7.
    Schottenfeld JA, Benesi AJ, Stephens PW, Chen G, Eklund PC, Mallouk TE (2005) J Solid State Chem 178:2313CrossRefGoogle Scholar
  8. 8.
    Gregory DH (1999) J Chem Soc Dalton Trans 259Google Scholar
  9. 9.
    Delasarte S, Florea M, Mauge F, Grange P (2006) Catal Today 116:216CrossRefGoogle Scholar
  10. 10.
    See for example: Yashima M, Maeda K, Teramura K, Takata T, Domem K, Chem Phys Lett 416 (2005) 225; Centeno MA, Paulis M, Montes M, Odriozola JA, Appl Catal B 61 (2005) 177; Florae M, Silvy RP, Grange P, Appl Catal A 286 (2005) 1Google Scholar
  11. 11.
    Maeda K, Teramura K, Saito N, Inoue Y, Domen K (2006) J Catal 243:303CrossRefGoogle Scholar
  12. 12.
    Mientus R, Grotschel R, Ellmer K (2005) Surf Coat Technol 200:341CrossRefGoogle Scholar
  13. 13.
    Iriyama Y, Kako T, Yada C, Abe T, Ogumi Z (2005) J Power Sour 146:745CrossRefGoogle Scholar
  14. 14.
    Marco De Lucas MC, Fabriguette F, Linsavanh M, Imhoff L, Heintz O, Josse-Courty C, Mesnier MT, Potin V, Bourgeois S, Sacilotti M (2004) J Cryst Growth 261:324Google Scholar
  15. 15.
    Wong CK, Wong H, Chan M, Kok CW, Chan HP (2006) Microelectron Reliab 46:2056CrossRefGoogle Scholar
  16. 16.
    Jung WS (2006) Mater Lett 60:2954CrossRefGoogle Scholar
  17. 17.
    Delasarte S, Grange P (2004) Appl Catal A: 259:269Google Scholar
  18. 18.
    Nowak I, Ziolek M (2006) Catal Today 118:410CrossRefGoogle Scholar
  19. 19.
    Li Y, Gao L (2003) Mater Lett 57:1062CrossRefGoogle Scholar
  20. 20.
    Matylistskaya VA, Bock W, Thoma K, Kolbesen BO (2005) Appl Surf Sci 252:205CrossRefGoogle Scholar
  21. 21.
    de Graaf D, Hintzen HT, de With G, Ramanujachary KV, lanci C, Lofland SE (2004) Solid State Commun 131:693CrossRefGoogle Scholar
  22. 22.
    Katsumata T, Takaki S, Inaguma Y, Shan YJ (2004) Solid State Commun 132:583CrossRefGoogle Scholar
  23. 23.
    Casadei F, Pileggi R, Valle R, Matthews A, Surf Coat Technol 201 (2006) 1200; Himri AE, Sapiña F, Ibañez R, Beltrán A, J Mater Chem 11 (2001) 2311Google Scholar
  24. 24.
    Boultif A, Louer D (1991) J Appl Cryst 24:987CrossRefGoogle Scholar
  25. 25.
    Nolze G, Kraus W (1998) Powder Diffract 13:256Google Scholar
  26. 26.
    Ruth K, Kieffer R, Burch R (1998) J Catal 175:16CrossRefGoogle Scholar
  27. 27.
    Botella P, López Nieto JM, Solsona B, Mifsud A, Márquez F (2002) J Catal 209:445CrossRefGoogle Scholar
  28. 28.
    Afanasiev P, Fischer L, Beauchesne F, Danot M, Gaborit V, Breysse M, Catal Lett 64 (2000) 59; Trunov VK, Kovba LM, Sirotkina EI, Dokl Akad Nauk SSSR 153 (1963) 1085Google Scholar
  29. 29.
    See for example: Herle PS, Hegde MS, Vasathacharya NY, Philip S, Rama Rao MV, Sripathi T (1997) J Solid State Chem 134:120Google Scholar
  30. 30.
    Volpe L, Oyama ST, Boudart M (1983) Stud Surf Sci Catal 16:147CrossRefGoogle Scholar
  31. 31.
    Oyama ST, Kapoor R, Oyama HT, Hoffmann DJ, Matijevic E (1993) J Mater Res 8:1450Google Scholar
  32. 32.
    Jackson SK, Layland RC, Zur Loye H-C (1999) J Alloys Compd 291:94CrossRefGoogle Scholar
  33. 33.
    Clarke SJ, DiSalvo FJ (1997) J Solid State Chem 132:3CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yuhong Wang
    • 1
  • Edward Lesterb
    • 2
  • Duncan H. Gregory
    • 3
  1. 1.Department of Chemical EngineeringShanghai Institute of TechnologyShanghaiP.R. China
  2. 2.School of Chemical, Environmental and Mining EngineeringUniversity of NottinghamNottinghamUK
  3. 3.School of ChemistryUniversity of NottinghamNottinghamUK

Personalised recommendations