Journal of Materials Science

, Volume 42, Issue 3, pp 747–751 | Cite as

Upconversion emissions in Yb3+–Tm3+-doped tellurite glasses excited at 976 nm

  • Guonian WangEmail author
  • Shixun Dai
  • Junjie Zhang
  • Jianhu Yang
  • Zhonghong Jiang


Intense Tm3+ blue upconversion emission has been observed in Tm3+–Yb3+ codoped oxyfluoride tellurite glass under excitation with a diode laser at 976 nm. Three emission bands centered at 475, 650 and 796 nm corresponding to the transitions 1G43H6, 1G43H4 and 3F43H6, respectively, simultaneously occur. The dependence of upconversion intensities on Tm3+ ions concentration and excitation power are investigated. For fixed Yb2O3 concentrations of 5.0 mol%, the maximum upconversion intensity was obtained with Tm2O3 concentration of about 0.1 mol%. The blue upconversion luminescence lifetimes of the Tm3+ transitions 1G43H6 are measured. The results are evaluated by the possible upconversion mechanisms.


Tellurite Glass Upconversion Luminescence Upconversion Emission Tm2O3 Upconversion Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to express our thanks to Mr. Wen L for optical spectra tests and to Dr. Yang J H for useful discussion. This research was financially supported by “Qimingxing” Project (No. 04QMX1448) of the Shanghai Municipal Science and Technology Commission and by the Chinese National Natural Science Foundation (Grant 60607014 and Grant 50572110).


  1. 1.
    Qiu J, Kanno R, Kawamoto Y (1998) J Mat Sci Lett 17:653CrossRefGoogle Scholar
  2. 2.
    Grubb SG et al. (1992) Electron Lett 28(13):1243CrossRefGoogle Scholar
  3. 3.
    Saders S et al. (1995) Appl Phys Lett 28(13):1815CrossRefGoogle Scholar
  4. 4.
    Miyakawa T, Dexter DL (1970) Phys Rev B 1(1):70CrossRefGoogle Scholar
  5. 5.
    Chen XB et al. (1996) SPIE 2897:279Google Scholar
  6. 6.
    Wang Y, Ohwaki J (1993) Appl Phys Lett 63(24):3268CrossRefGoogle Scholar
  7. 7.
    Martin IR et al. (1999) Spectrochim Acta A 55:941CrossRefGoogle Scholar
  8. 8.
    Ozen G et al. (1994) J Non-Cryst Solids 176:147CrossRefGoogle Scholar
  9. 9.
    Hanna DC et al. (1990) Opt Commun 78(2):187CrossRefGoogle Scholar
  10. 10.
    Sidebottom DL et al. (1997) J Non-Cryst Solids 222:282CrossRefGoogle Scholar
  11. 11.
    Tanabe S, Hirao K, Soga N (1990) J Non-Cryst Solids 122: 79CrossRefGoogle Scholar
  12. 12.
    Kim SH, Yoko T (1995) J Am Ceram Soc 78(4):1061CrossRefGoogle Scholar
  13. 13.
    Dussardier B et al. (1994) J Appl Phys 75:4180CrossRefGoogle Scholar
  14. 14.
    Peng B, Izumitani T (1994) Opt Mat 4:703Google Scholar
  15. 15.
    Tamai K, Hirao K, Soga N (1996) Phys Rev B 53(13):8358Google Scholar
  16. 16.
    Wyss CP et al. (1999) J Lumin 82:138CrossRefGoogle Scholar
  17. 17.
    Chen XB, Du WM, Sawanobori N (2000) Opt Commun 181:171CrossRefGoogle Scholar
  18. 18.
    Auzl FE (1973) Proc IEEE 621:758CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Guonian Wang
    • 1
    • 2
    Email author
  • Shixun Dai
    • 1
  • Junjie Zhang
    • 1
  • Jianhu Yang
    • 1
  • Zhonghong Jiang
    • 1
  1. 1.Shanghai Institute of Optics & Fine MechanicsChinese Academy of ScienceShanghaiChina
  2. 2.Graduate School of the Chinese Academy of SciencesShanghaiChina

Personalised recommendations