Journal of Materials Science

, Volume 42, Issue 3, pp 752–758 | Cite as

Preparation and electrochemical characteristics of microemulsion-derived Li(Ni, Co)O2 nanopowders

  • Chung-Hsin LuEmail author
  • Hsien-Cheng Wang


Nanosized LiNi0.9Co0.1O2 powders used in lithium-ion batteries are successfully prepared via a water-in-oil microemulsion process. The average particle sizes of the microemulsion-derived LiNi0.9Co0.1O2 powders are in nanometer scale. The obtained powders are much smaller in size than the specimens prepared via the conventional solid state and sol–gel processes. Oxygen has significant enhancement effects on the cationic ordering of the calcined powders. Highly cation-ordered LiNi0.9Co0.1O2 powders with a layered \( R\bar 3m \) structure are obtained after heat-treatment at 800 °C in O2. In addition, the high intensity ratio of I003/I104 reveals that lithium ions and transition metal ions are regularly situated at the 3a and 3b sites, respectively, rendering the high cationic ordering. The discharge capacity of the first cycle for the specimen calcined at 800 °C in O2 is 170.9 mAh/g. After 20 cycles, the capacity retention of LiNi0.9Co0.1O2 powders is 93.2%, indicating that LiNi0.9Co0.1O2 powders with good cycling characteristics are obtained via the microemulsion process.


Calcination Temperature Discharge Capacity Reverse Micelle Calcine Powder Calcination Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the National Science Council, Taiwan, the Republic of China, for financial support of this study under Contract No. NSC 92-ET-7-002-003-ET.


  1. 1.
    Ohzuku T, Ueda A, Nagayama M (1993) J Electrochem Soc 140:1862CrossRefGoogle Scholar
  2. 2.
    Chang CC, Kim JY, Kumta PN (2000) J Electrochem Soc 147:1722CrossRefGoogle Scholar
  3. 3.
    Aydinol MK, Ceder G (1997) J Electrochem Soc 144:3832CrossRefGoogle Scholar
  4. 4.
    Xia Y, Zhou Y, Yoshio M (1997) J Electrochem Soc 144:2593CrossRefGoogle Scholar
  5. 5.
    Wang H, Jang YI, Chiang YM (1999) Electrochem Solid-State Lett 2:490CrossRefGoogle Scholar
  6. 6.
    Ammundsen B, Paulsen J (2001) Adv Mater 13:943CrossRefGoogle Scholar
  7. 7.
    Cho J, Jung H, Park Y, Kim G, Lim HS (2000) J Electrochem Soc 147:15CrossRefGoogle Scholar
  8. 8.
    Li W, Currie JC (1997) J Electrochem Soc 144:2773CrossRefGoogle Scholar
  9. 9.
    Gummow RJ, Thackeray MM (1993) J Electrochem Soc 140:3365CrossRefGoogle Scholar
  10. 10.
    Chebiam RV, Prado F, Manthiram A (2001) J Electrochem Soc 148:A49CrossRefGoogle Scholar
  11. 11.
    Madhavi S, Rao GVS, Chowdari BVR, Li SFY (2001) J Power Sources 93:156CrossRefGoogle Scholar
  12. 12.
    Kweon HJ, Kim GB, Lim HS, Nam SS, Park DG (1999) J Power Sources 83:84CrossRefGoogle Scholar
  13. 13.
    Caurant D, Baffier N, Garcia B, Ramos JPP (1996) Solid State Ionics 91:45CrossRefGoogle Scholar
  14. 14.
    Lee KK, Yoon WS, Kim KB (2001) J Electrochem Soc 148:A1164CrossRefGoogle Scholar
  15. 15.
    Gan LM, Liu B, Chew CH, Xu SJ, Chua SJ, Loy GL, Xu GQ (1997) Langmuir 13:6427CrossRefGoogle Scholar
  16. 16.
    Zarur AJ, Ying JY (2000) Nature 403:65CrossRefGoogle Scholar
  17. 17.
    Lu CH, Wang HC (2003) J Mater Chem 13:428CrossRefGoogle Scholar
  18. 18.
    Ng WB, Wang J, Ng SC, Gan LM (1999) J Am Ceram Soc 82:529CrossRefGoogle Scholar
  19. 19.
    Chang CL, Fogler HS (1997) Langmuir 13:3295CrossRefGoogle Scholar
  20. 20.
    Ueda A, Ohzuku T (1994) J Electrochem Soc 141:2010CrossRefGoogle Scholar
  21. 21.
    Cho J, Kim G, Lim HS (1999) J Electrochem Soc 146:3571CrossRefGoogle Scholar
  22. 22.
    Andersson AM, Abraham DP, Haasch R, Maclaren S, Liu J, Amine K (2002) J Electrochem Soc 149:A1358CrossRefGoogle Scholar
  23. 23.
    Pang YI, Bao X (2002) J Mater Chem 12:3699CrossRefGoogle Scholar
  24. 24.
    Takahashi Y, Akimoto J, Gotoh Y, Kawaguchi K, Mizuta S (2001) J Solid State Chem 160:178CrossRefGoogle Scholar
  25. 25.
    Yamada S, Fujiwara M, Kanda M (1995) J Power Sources 54:209CrossRefGoogle Scholar
  26. 26.
    Saadoune I, Menetrier M, Delmas C (1997) J Mater Chem 12:2505CrossRefGoogle Scholar
  27. 27.
    Cho J, Park B (2001) J Power Sources 92:35CrossRefGoogle Scholar
  28. 28.
    Machida N, Maeda H, Peng H, Shiigematsu T (2002) J Electrochem Soc 149:A688CrossRefGoogle Scholar
  29. 29.
    Lu CH, Wang HC (2003) J Eur Ceram Soc 23:865CrossRefGoogle Scholar
  30. 30.
    Kim J, Amine K (2002) J Power Sources 104:33CrossRefGoogle Scholar
  31. 31.
    Babu BR, Periasamy P, Thirunakaran R, Kalaiselvi N, Kumar TP, Renganathan NG, Raghavan M, Muniyandi N (2001) Int J Inorg Mater 3:401CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Electronic and Electro-optical Ceramics Laboratory, Department of Chemical EngineeringNational Taiwan UniversityTaipeiTaiwan, R.O.C.

Personalised recommendations