Journal of Materials Science

, Volume 42, Issue 3, pp 784–788 | Cite as

Electrical switching and spectroscopic studies of silver-vanado-phosphate glasses

  • B. Eraiah
  • R. V. AnavekarEmail author
  • S. Asokan


High field electrical switching studies on x Ag2O − (50−x) P2O5 −50V2O5 glasses have been carried out as a function of sample thickness, composition and temperature. The I–V characteristic show that switching in these glasses is memory type. The switch voltages are found to decrease with increase of temperature, on the other hand, the voltages increase with the thickness of the sample. The experimental findings clearly reveal that switching in these glasses is a thermally assisted bulk effect. The results obtained are explained on the basis of formation of crystalline conducting channels. Another notable observation is that the glass with 15 mol% Ag2O concentration only exhibits the switching property at room temperature. This aspect is examined in view of various structural groups present in these glasses with the help of spectroscopic studies; IR and MAS–NMR measurements have been carried out. IR studies of these glasses show characteristic absorption peaks corresponding phosphate and vanadium vibrations in the network. 31P MAS–NMR chemical shift show presence of [POO3/2]0 and [POO2/2O] groups.


Ag2O Switching Behavior Vanadium Pentoxide Switching Voltage Memory Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors (R.V.A) would like to thank the UGC, New Delhi, for financial assistance to carryout this work.


  1. 1.
    Vaidhyanathan B, Rao KJ (1995) J Appl Phys 78(2):1358CrossRefGoogle Scholar
  2. 2.
    Kolomiets BT, Lrbedev EA, Takasami IA (1969) Sov Phys Semicond 3:267Google Scholar
  3. 3.
    Gattef E, Dimitrov Y (1979) Philo Mag B4:233CrossRefGoogle Scholar
  4. 4.
    Soltan AS, Moharram AH (2004) Physica B349:92CrossRefGoogle Scholar
  5. 5.
    Kuwano J (1990) Solid State Ionics 40/41:696CrossRefGoogle Scholar
  6. 6.
    Vaidhyanathan B, Asokan S, Rao KJ (1995) Bull Mater Sci 18(3):301CrossRefGoogle Scholar
  7. 7.
    Tatsmisago M, Shinkuma Y, Minami T (1991) Nature 354:271Google Scholar
  8. 8.
    Chatterjee R, Acharya KV, Asokan S, Titus SSK (1994) Rev Sci Intrum 65(7):2382CrossRefGoogle Scholar
  9. 9.
    Ghosh A (1988) J Appl Phys 64(5):2652CrossRefGoogle Scholar
  10. 10.
    Sanderson RT (1983) Polar covalence. Academic press, NewYorkGoogle Scholar
  11. 11.
    Farouk H, Ezz Eldin FM, Farhan H, El -Batal HA, Kashif I (1994) J Phys Chem Glasses 35(5):207Google Scholar
  12. 12.
    Rao KJ, Sobha KC, Sundeep Kumar (2001) Proc Indian Acad Sci (Chem Sci) 113(5 & 6):497Google Scholar
  13. 13.
    Cule E, Nicula AL, Bratu I (1984) Phys Stat Solidi 9(83):K15CrossRefGoogle Scholar
  14. 14.
    Osaka A, Takahash K, Ikeda M (1984) J Mater Sci Lett 3:36CrossRefGoogle Scholar
  15. 15.
    Arujo EB, Eiras JA, Delmedia EF, de-Paiva JAC, Somra SB (1999) Phys Chem Glasses 40(5) 273Google Scholar
  16. 16.
    Rivoalen L, Recolevschi A, Livage J, Collogues R (1976) J Non-Cryst Solids 21:171CrossRefGoogle Scholar
  17. 17.
    Anderson GW, Compton WD (1970) J Chem Phys 52:1691Google Scholar
  18. 18.
    Kulieva SA, Rza-zade PF, Gnaf KL, Luzhnaga NP (1974) Inorg Mater Sci (USA) 10:550Google Scholar
  19. 19.
    Muthupari S, Rao KJ (1996) J Phys Chem Solids 57(5):533CrossRefGoogle Scholar
  20. 20.
    Martin SW, Bischof HJ, Mali M, Roos J, Brinkmann D (1986) Solid State Ionics 18/19:421CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsBangalore UniversityBangaloreIndia
  2. 2.Department of InstrumentationIndian Institute of ScienceBangaloreIndia
  3. 3.Department of PhysicsKarnatak UniversityDharwadIndia

Personalised recommendations