Skip to main content
Log in

Synthesis of tungsten bronze powder and determination of its composition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sodium tungsten bronze powders were synthesized by thermal reduction of a gas/melt system at high temperature. Samples having a cubic structure with different compositions were prepared. The initial melt included Na2WO4, WO3 and 10–40% mol. NaCl while the reducing gas was hydrogen at 750 °C. An original mechanism of controlling the powders size and distribution was suggested and discussed. A quantitative novel and simple method to determine the bronze composition based on TGA data was developed. An increase in the NaCl content led to a decrease of the crystals size and improved the powder uniformity. Fine powders, in the 2–5 μm size range, were synthesized from melt with 40% mol of NaCl. The stoichiometry parameter x of the obtained bronzes ranged from 0.8 to 0.92. An excellent agreement between x values determined by the classical XRD route and the proposed TGA method was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Philipp J, Schwebel P (1879) Ber Deutsch Chem Ges 12:2234

    Article  Google Scholar 

  2. Edwards PP, Rao CNR (1985) The metallic and nonmetallic states of matter. Taylor & Francis

  3. Hagenmuller P (1971) In: Progress in solid state chemistry, vol 5. Oxford Pergamon, p 71

  4. Sienko MJ (1963) In: Non-stoichiometric compounds. Advances in Chemistry Series, American Chemical Society, p 224

  5. Ribnick AS, Post B, Banks E (1963) In: Non-stoichiometric compounds. Advances in Chemistry Series, American Chemical Society, p 246

  6. Randin JP (1974) J Chem Educ 51(1):32

    Article  CAS  Google Scholar 

  7. Brown BW, Banks E (1954) J Am Chem Soc 76:963

    Article  CAS  Google Scholar 

  8. Barabushkin AN, Kaliev KA, Vakarin SV, Dokuchaev LYa, Butrimov VV, Aksent’ev AG (1988) U.S.S.R., SU 1425531 A1 19880923

  9. Ozerov RP (1954) Uspekhi Khimii 24:951

    CAS  Google Scholar 

  10. Shanks HR (1972) J Crystal Growth 13/14:433

    Article  Google Scholar 

  11. Bartha L, Kiss AB, Szalay T (1995) Int J Refractory Metals & Hard Mater 13(1–3):77

    Article  CAS  Google Scholar 

  12. Shurdumov BK (2001) Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya 44(6):152

    CAS  Google Scholar 

  13. Shurdumov BK, Shurdumov GK, Kuchukova MA (1999) RU 2138445C1

  14. Salje E, Hatami H (1973) Z Allg Chem 396:267

    Article  CAS  Google Scholar 

  15. Zhu YT, Manthiram A (1994) J Solid Sate Chem 110:187

    Article  CAS  Google Scholar 

  16. Fan R, Chen XH, Gui Z, Li SY, Chen ZY (2001) Mat Let 49:14

    Article  Google Scholar 

  17. Dickens PG, Whittingham MS (1965) M S Trans Faraday Soc 61:1226

    Article  CAS  Google Scholar 

  18. Weber MF, Bevolo AJ, Shanks HR, Danielson GC (1981) J Electrochem Soc 128(5):996

    Article  CAS  Google Scholar 

  19. Bevolo AJ, Weber MF, Shanks HR, Danielson GC (1981) J Electrochem Soc 128(5):1004

    Article  CAS  Google Scholar 

  20. Shanks HR, Bevolo AJ, Danielson GC, Neker MF (1980) Fuel cell oxygen electrode, U.S. Pat. Appl. US 18211

  21. Binder H, Knoedler R, Koehling A, Sandstede G (1977) Device for the continuous determination of carbon monoxide content in air, U.S. Pat. Appl. US 580532

  22. Wechter MA, Hahn PB, Ebert GM, Montoya PR, Voigt AF (1972) Anal Chem 45:7

    Google Scholar 

  23. Hahn PB, Wechter MA, Jhonson DC, Voigt AF (1973) Anal Chem 45:7

    Article  Google Scholar 

  24. Whittimgham MS, Huggins RA (1971) J chem Phys 54:1

    Article  Google Scholar 

  25. van Duyn D (1942) Recl Rtav Chim Pays-Bas, Belg 61:661

    Google Scholar 

  26. Cleaver B, Koronaios P (1994) J Chem Eng Data 39(4):848

    Article  CAS  Google Scholar 

  27. Khakulov ZL, Mohosoev MV, Vorozgbit VU, Shurdumov GK (1983) Khimia I Tekhnol Molibdena I Vol’frama, Nal’chik, USSR 7:23

    Google Scholar 

  28. Vorozgbit VU, Shurdumov GK, Kodzokov KhA (1979) Khimia I Tekhnol Molibdena I Vol’frama, Nal’chik, USSR 5:79

    Google Scholar 

  29. Shurdumov BK (1976) Khimia I Tekhnol Molibdena I Vol’frama, Nal’chik, USSR 3:175

    Google Scholar 

  30. Hoermann F (1928) Zs Anorgan Allgem Chem 177(2–3):145; Tropov NA, Barzakovsky VP, Lapin VV, Kurtseva NN (1969) Phase diagrams of silicates systems. Academy of Science USSR, “Nauka”, Leningrad, p 628

Download references

Acknowledgements

The investigations were supported by the Technion’s fund for the promotion of research and in part by a joint grant from the Center for Adsorption in Science of the Ministry of Immigrant Absorption State of Israel and the Committee for Planning and Budgeting of the Council for Higher Education under the framework of the KAMEA Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon S. Grader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, M., Shter, G.E., Reisner, G.M. et al. Synthesis of tungsten bronze powder and determination of its composition. J Mater Sci 42, 1010–1018 (2007). https://doi.org/10.1007/s10853-006-1384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1384-x

Keywords

Navigation