Advertisement

Journal of Materials Science

, Volume 42, Issue 8, pp 2807–2819 | Cite as

Compressive creep behavior in air of a slightly porous as-sintered polycrystalline α-alumina material

  • Guillaume Bernard-Granger
  • Christian Guizard
  • Richard Duclos
Article

Abstract

Compressive creep tests in air have been performed on a polycrystalline submicron as sintered and slightly porous α-alumina material. Two different deformation mechanisms, depending on the applied stress and creep temperature, have been identified when the grain size becomes higher than a critical value 〈G *〉.

For low temperatures and/or low applied stresses, deformation occurs by grain boundary sliding accommodated by an in-series “interface reaction/diffusion of Al3+ cations” process, with the limiting step being the interface reaction. In this case increased densification of the samples is observed after creep, compared to the as-sintered ones.

In contrast, for high temperatures and/or high-applied stresses, deformation occurs by grain boundary sliding accommodated by the relocation and growth of preexisting cavities, the growth step being also controlled by the diffusion of Al3+ cations. In this case, a marked decrease of the relative density is measured on the crept samples compared to the as-sintered ones.

Using these results, it is possible to identify the optimal conditions for superplastic forming of previously as-sintered parts, leading to shaped objects with an increased final density.

Keywords

Creep Rate Creep Test Creep Strain Creep Deformation Creep Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Krell A, Blank P, Ma H, Hutzler T, Nebelung M (2003) J Am Ceram Soc 86(4):546CrossRefGoogle Scholar
  2. 2.
    Krell A, Blank P, Ma H, Hutzler T, van Bruggen MPB, Apetz R (2003) J Am Ceram Soc 86(1):12Google Scholar
  3. 3.
    Munro RG (1997) J Am Ceram Soc 80(8):1919CrossRefGoogle Scholar
  4. 4.
    Schacht M, Boukis N, Dinjus E (2000) J Mater Sci 35(24):6251CrossRefGoogle Scholar
  5. 5.
    Mikeska KR, Bennison SJ (1999) J Am Ceram Soc 82(12):3561CrossRefGoogle Scholar
  6. 6.
    Oda K, Yoshio T (1997) J Am Ceram Soc 80(12):3233CrossRefGoogle Scholar
  7. 7.
    Dogan CP, Hawk JA (1999) Wear 225–229(2):1050Google Scholar
  8. 8.
    Kalin M, Novak S, Vizintin J (2003) Wear 254(11):1141CrossRefGoogle Scholar
  9. 9.
    Bataille A, Addad A, Crampon J, Duclos R (2005) J Eur Ceram Soc 25(6):857CrossRefGoogle Scholar
  10. 10.
    Bataille A, Crampon J, Duclos R (1999) Ceram Int 25(3):215CrossRefGoogle Scholar
  11. 11.
    Xue LA, Chen IW (1996) J Am Ceram Soc 79(1):233CrossRefGoogle Scholar
  12. 12.
    Wang ZC, Davies TJ, Ridley N, Ogwu AA (1996) Acta Mater 44(11):4301CrossRefGoogle Scholar
  13. 13.
    Clarisse L, Baddi R, Bataille A, Duclos R, Vicens J (1997) Acta Mater 45(9):3843CrossRefGoogle Scholar
  14. 14.
    Flacher O, Blandin JJ, Plucknett KP (1996) Mater Sci Eng A Struct Mater: Prop Microstruct Process 221(1&2):102Google Scholar
  15. 15.
    Bernard-Granger G, Baddi R, Duclos R, Crampon J (1992) J Eur Ceram Soc 10(1):13CrossRefGoogle Scholar
  16. 16.
    Dominguez-Rodriguez A, Gomez-Garcia D, Lorenzo-Martin C, Munoz-Bernabe A (2003) J Eur Ceram Soc 23(15):2969CrossRefGoogle Scholar
  17. 17.
    Tong GQ, Chan KC, Gao L, Lin ZR (2002) Mater Sci Eng A Struct Mater: Prop Microstruct Process 336(1&2):263Google Scholar
  18. 18.
    Duclos R, Crampon J, Carry C (2002) Philos Mag Lett 82(10):529CrossRefGoogle Scholar
  19. 19.
    Charity I, Chokshi AH (2001) Acta Mater 49(12):2239CrossRefGoogle Scholar
  20. 20.
    Jimenez-Melendo M, Dominguez-Rodriguez A (1999) Philos Mag A Phys Condens Mater Struct Defects Mech Prop 79(7):1591Google Scholar
  21. 21.
    Béclin F, Duclos R, Crampon J, Valin F (1997) J Eur Ceram Soc 17(2&3):439CrossRefGoogle Scholar
  22. 22.
    Béclin F, Duclos R, Crampon J, Valin F (1995) Acta Metall Mater 43(7):2753CrossRefGoogle Scholar
  23. 23.
    Besson JL, Murat D, Rouxel T, Valin F, Boncoeur M (1996) J Am Ceram Soc 79(3):773CrossRefGoogle Scholar
  24. 24.
    Rouxel T, Murat D, Besson JL, Boncoeur M (1996) Acta Mater 44(1):263CrossRefGoogle Scholar
  25. 25.
    Shinoda Y, Nagano T, Hui Gu F, Wakai F (1999) J Am Ceram Soc 82(10):2916CrossRefGoogle Scholar
  26. 26.
    Kondo N, Suzuki Y, Ohji T, Sato E, Wakai F (1999) Mater Sci Eng A Struct Mater: Prop Microstruct Process 268(1&2):141Google Scholar
  27. 27.
    Kondo N, Wakai F (1996) J Mater Sci 31(20):5499CrossRefGoogle Scholar
  28. 28.
    Rouxel T, Wakai F, Izaki K (1992) J Am Ceram Soc 75(9):2363CrossRefGoogle Scholar
  29. 29.
    Technical data sheet of the TM-DAR raw powder, Taimei Chemicals Co. Ltd, Tokyo, JapanGoogle Scholar
  30. 30.
    Technical data sheet of the SM8 raw powder, Baïkowski, La Balme de Sillingy, FranceGoogle Scholar
  31. 31.
    Herring C (1950) J Appl Phys 21(5):437CrossRefGoogle Scholar
  32. 32.
    Coble RL (1963) J Appl Phys 34(6):1679CrossRefGoogle Scholar
  33. 33.
    Ashby MF, Verrall RA (1973) Acta Metall 21(2):149CrossRefGoogle Scholar
  34. 34.
    Burton B (1983) Phil Mag A 48(3):L9Google Scholar
  35. 35.
    Raj R, Chyung K (1981) Acta Metall 29 (1):159CrossRefGoogle Scholar
  36. 36.
    Evans AG, Rana A (1980) Acta Metall 28(2):129CrossRefGoogle Scholar
  37. 37.
    Suresh S, Brockenbrough JR (1990) Acta Metall Mater 38(1):55CrossRefGoogle Scholar
  38. 38.
    Silva WP, Silva CDPS (1999–2005) LAB Fit Curve Fitting Software (non-linear regression and treatment of data program), V 7.2.33, online, available from world wide web: www.labfit.netGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Guillaume Bernard-Granger
    • 1
  • Christian Guizard
    • 1
  • Richard Duclos
    • 2
  1. 1.Laboratoire de Synthèse et Fonctionnalisation des CéramiquesFRE 2770 CNRS/Saint-Gobain, Saint-Gobain C.R.E.E.Cavaillon CedexFrance
  2. 2.Laboratoire de Structure et Propriétés de l’Etat Solide, UMR CNRS 8008Université des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance

Personalised recommendations