Journal of Materials Science

, Volume 42, Issue 9, pp 3190–3196 | Cite as

Synthesis of PANI/TiO2–Fe3+ nanocomposite and its photocatalytic property

  • Jinzhang Gao
  • Shengying Li
  • Wu Yang
  • Gang Ni
  • Lili Bo


A convenient method for synthesizing highly photocatalytic activity PANI/TiO2–Fe3+ nanocomposite was developed. The effect of calcination temperature on the phase composition of TiO2 nanopowder was investigated. It was found that higher temperature could promote the formation of rutile phase. The nanocomposite was characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), infrared spectroscopy (IR) and X-ray diffraction (XRD). The results indicated that the nanohybrid was composed of TiO2, Fe3+ and PANI. The photocatalytic property of the nanocomposite was evaluated by the degradation of methyl orange. In the presence of this catalyst, the degradation rate of methyl orange of 95.2% and 70.3% could be obtained under the UV and sunlight irradiation within 30 min, respectively. The apparent rate constant was 5.64 × 10−2 which is better than that of the Degussa P25.


TiO2 PANI Photocatalytic Activity Calcination Temperature Methyl Orange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by the Combined Project between the Educational Commission and the Economic Commission of Gansu Province (99CX-04, 0310B-08), the Natural Science Foundation of Gansu Province (3ZS041-A25–028), EYTP of MOE. China, and the Invention Project of Science & Technology (KJCXGC-01, NWNU), China.


  1. 1.
    Fujishima A, Honda K (1972) Nature 37:238Google Scholar
  2. 2.
    Guo XJ, Yuan L, Qi YL, Li XE, Yang W, Gao JZ (2004) Rare Metals 23:352Google Scholar
  3. 3.
    Xu ZL, Yang QJ, Xie C, Yan WJ, Du YG, Gao ZM, Zhang JH (2005) J Mater Sci 40:1539, DOI: 10.1007/s10853-005-0599-6Google Scholar
  4. 4.
    Yu JG (2004) Rare Metals 23:289Google Scholar
  5. 5.
    Yan XL, He J, Evans DG, Duan X, Zhu YX (2005) Appl Catal B Environ 55:243CrossRefGoogle Scholar
  6. 6.
    Khanna PK, Lonkar SP, Subbarao VVVS, JUN KW (2004) Mater Chem Phys 87:49CrossRefGoogle Scholar
  7. 7.
    Alan GM, Arthur JE (1995) Synth Met 69:85CrossRefGoogle Scholar
  8. 8.
    Somani PR, Marimuthu R, Mulik UP, Sainkar SR, Amalnerkar DP (1999) Synth Met 106:45CrossRefGoogle Scholar
  9. 9.
    Arroyo R, Córdoba G, Padilla J, Lara VH (2002) Mater Lett 54:397CrossRefGoogle Scholar
  10. 10.
    Spurr RA, Myers H (1957) Anal Chem 29:760CrossRefGoogle Scholar
  11. 11.
    Langford JA, Wilson AJC (1978) J Appl Crystallogr 11:102CrossRefGoogle Scholar
  12. 12.
    Klong HP, Alexander LE (1954) In: X-ray diffraction procedures for crystalline and amorphous solids. Wiley, New York, p 491Google Scholar
  13. 13.
    Sclafani A, Herrman JM (1996) J Phys Chem 100:13655CrossRefGoogle Scholar
  14. 14.
    Li XW, Chen W, Bian CQ, He JB, Xu N, Xue G (2003) Appl Surf Sci 217:16CrossRefGoogle Scholar
  15. 15.
    Yu JG, Zhao XJ (2000) J Catal 21:213 (in Chinese)Google Scholar
  16. 16.
    Sonawane RS, Kale BB, Dongare MK (2004) Mater Chem Phys 85:52CrossRefGoogle Scholar
  17. 17.
    Piscopo A, Robert D, Weber JV (2001) J Photochem Photobiol A Chem 139:253CrossRefGoogle Scholar
  18. 18.
    Linsebigler AL, Lu GQ, Yates JT (1995) Chem Rev 95:735CrossRefGoogle Scholar
  19. 19.
    Měšt’ánková H, Mailhot G, Jirkovský J, Krýsa J, Bolte M (2005) Appl Catal B Environ 57:257CrossRefGoogle Scholar
  20. 20.
    Vaschetto ME, Monkman AP, Springborg M (1999) J Mol Struct (Theochem) 468:181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jinzhang Gao
    • 1
  • Shengying Li
    • 1
  • Wu Yang
    • 1
  • Gang Ni
    • 1
  • Lili Bo
    • 1
  1. 1.College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouP.R. China

Personalised recommendations