Journal of Materials Science

, Volume 42, Issue 10, pp 3670–3674 | Cite as

Effect of Li/Nb ratio on structure and photorefractive properties of Zn:Fe:LiNbO3 crystals



Zn:Fe:LiNbO3 crystals with different Li/Nb ratios in the melts (Li/Nb = 0.946, 0.97, 1.00, 1.10, 1.20, 1.44) have been grown for the first time. The UV–Vis absorption spectra, exponential gain coefficient, diffraction efficiency and response time of the crystals were measured. With the ratio of Li/Nb increasing, the absorption edge shifts to a shorter wavelength, the exponential gain coefficient and response speed increase, but the diffraction efficiency decreases.


Absorption Edge LiNbO3 Diffraction Efficiency Signal Beam Fundamental Absorption Edge 



This work is sponsored by National Major Project of Fundamental Research of China (G19990330) and China Postdoctoral Science Foundation.


  1. 1.
    Wang HL, Hang Y, Zhang LH, Xu J, He MZ, Zhu SN, Zhu YY, Zhou SM (2004) J Cryst Growth 262:313CrossRefGoogle Scholar
  2. 2.
    Chen XJ, Zhu DS, Li B, Ling T, Wu ZK (2001) Opt Lett 26:998CrossRefGoogle Scholar
  3. 3.
    Chen XJ, Li B, Xu JJ, Zhu DS, Pan SH, Wu ZK (2001) J Appl Phys 90:1516CrossRefGoogle Scholar
  4. 4.
    Galambos L, Orlov SS, Hessenlink L, Furukawa Y, Kitamura K, Takekawa S (2001) J Cryst Growth 229:228CrossRefGoogle Scholar
  5. 5.
    Abdi F, Aillerie M, Bourson P, Fontana MD, Polgar K (1998) J Appl Phys 84:2251CrossRefGoogle Scholar
  6. 6.
    Sun DL, Hang Y, Zhang LH (2002) J Synthetic Cryst 31:314Google Scholar
  7. 7.
    Furukawa Y, Sato M, Kitamura K, Yajima Y, Minakata M (1992) J Appl Phys 72:3250CrossRefGoogle Scholar
  8. 8.
    Serrano MD, Bermudez V, Arizmendi L, Didguez E (2000) J Cryst Grow 210:670CrossRefGoogle Scholar
  9. 9.
    Bryan DA, Gerson R, Tomaschke HE (1984) Appl Phys Lett 44:847CrossRefGoogle Scholar
  10. 10.
    Bienvenu MP, Woodbury D, Robson TA (1980) J Appl Phys 51:4245CrossRefGoogle Scholar
  11. 11.
    Földvári I, Polgár K,Voszka R, Balasanyan RN (1984) Cryst Res Technol 19:1659CrossRefGoogle Scholar
  12. 12.
    Kovács L, Ruschhaupt G, Polgár K, Corradi G, Wöhlecke M (1997) Appl Phys Lett 70:2801CrossRefGoogle Scholar
  13. 13.
    Jin BM, Kim IW, White WB, Bhalla AS (1997) Mater Lett 30:385CrossRefGoogle Scholar
  14. 14.
    Liu Y, Kitamura K, Takekawa S, Ravi G, Nakaurua M, Hatano H, Yamaji T (2002) Appl Phys Lett 81:2686CrossRefGoogle Scholar
  15. 15.
    Zhang G, Tomita Y, Zhang X, Xu J (2002) Appl Phys Lett 81:1393CrossRefGoogle Scholar
  16. 16.
    Zhen XH, Zhao LC, Xu YH (2003) Appl Phys B 76:655Google Scholar
  17. 17.
    Polgár K, Péter Á, Kovács L, Corradi G, Szaller Zs (1997) J Cryst Growth 177:211CrossRefGoogle Scholar
  18. 18.
    Wöhleke M, Corradi G, Betzler K (1996) Appl Phys B 63:323CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Xu YH, Li MH, Zhao YQ (2001) J Cryst Growth 233:537CrossRefGoogle Scholar
  20. 20.
    Volk T, Rubinina N, Wöhlecke M (1994) J Opt Soc Am B 11:1681CrossRefGoogle Scholar
  21. 21.
    Donnerberg H, Tomlison SM, Catlow CRA, Schirmer OF (1989) Phys Rev B 40:11909CrossRefGoogle Scholar
  22. 22.
    Kogelink H (1969) Bell Syst Tech J 48:2909Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingP. R. China
  2. 2.School of Material Science and EngineeringHarbin Institute of TechnologyHarbinP. R. China
  3. 3.Department of Applied ChemistryHarbin Institute of TechnologyHarbinP. R. China

Personalised recommendations