Skip to main content
Log in

Positron lifetime studies and coincidence Doppler broadening spectroscopy of Al–6Mg–xSc (x = 0 to 0.6 wt.%) alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Positron annihilation spectroscopy (PAS), comprising of both positron lifetime and coincidence Doppler broadening measurements, has been employed for studying the phase decomposition behaviour of scandium doped Al–6Mg alloys. Micro structural and age hardening studies have also been conducted to substantiate the explanation of the results of PAS. Samples with scandium concentration ranging from 0 to 0.6 wt.% have been studied. The measured positron lifetimes of undoped alloy reveal that GP zones are absent in the as-prepared Al–6Mg alloy. The observed positron lifetimes and the results of coincidence Doppler broadening measurements largely stem from the entrap of positrons at the interface between aluminium rich primary dendrites and the magnesium enriched interdendritic eutectic mixture of Mg5Al8 (β) and the primary solid solution of aluminium (α). The study also provides evidence of the formation of scandium vacancy complexes in Al–6Mg alloys doped with scandium upto a concentration of 0.2 wt.%. However such complex formation ceases to continue beyond 0.2 wt.% Sc; instead, the formation of fine coherent precipitates of Al3Sc is recorded in the as prepared alloy containing 0.6 wt.% scandium. The positron annihilation studies coupled with CDBS have also corroborated with the fact that the fine coherent precipitates of Al3Sc are formed upon annealing the Al–6Mg alloys doped with scandium of concentration 0.2 wt.% and above. Transmission electron microscopic studies have provided good evidence of precipitate formation in annealed Al–6Mg–Sc alloys. Elevated temperature annealing leads to dissociation of the scandium-vacancy complexes, thereby leading to the enhancement of the mobility of magnesium atoms. This has facilitated fresh nucleation and growth of Mg5Al8 precipitates in the above alloys at 673 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Aiura T, Sugawara N, Miura Y (2000) Mater Sci Eng A 280:139

    Article  Google Scholar 

  2. Gaber A, Afify N (1992) J Mater Sci 27:1342

    Article  Google Scholar 

  3. Toropova LS, Eskin DG, Kharakterova MI, Dobatkina TV (1998) Advanced aluminium alloys containing scandium. Gordon and Breach Science Publishers, Amsterdam, p 39

  4. Aluminium–magnesium (5000) alloys, knowledge article, www.Key-To-Metals.com, p 1

  5. Lorimer GW, Nicholson RB (1969) The mechanism of phase transformation in crystalline solids. Monograph and Robert Series No. 33. The Institute of Metals, p 36

  6. Ohta M, Yamada M, Kanadani T, Sakakibara A (1987) Mater Trans Jim 28:615

    Article  Google Scholar 

  7. Gaber AF, Afify N, Gadalla A, Mossad A (1999) High Temp–High Press 31:613

    Article  CAS  Google Scholar 

  8. Mcnelley TR, Lee EW, Mills ME (1986) Met Trans A 17:1035

    Article  Google Scholar 

  9. Lee EW, Mcnelley TR, Stengel AF (1986) Met Trans A 17:1043

    Article  Google Scholar 

  10. Polmear IJ (1987) Mater Sci Forum 13/14:195

    Article  Google Scholar 

  11. Sawtell RR, Jensen CL (1990) Met Trans A 21:421

    Article  Google Scholar 

  12. Drits ME, Pavlenko SV, Toropova LS, Bykov YuG, Ber LB (1981) Soviet Phys Dokl 26:344

    Google Scholar 

  13. Elagin VI, Zakharov VV, Rostova TD (1983) Metally Term Obbrab Met 7:57

    Google Scholar 

  14. Willy LA (1971) United States Patent No. 3,619,181

  15. Dirts MD, Toropova LS, Bykov YuG (1983) Metally Term Obbrab Met 7:60

    Google Scholar 

  16. Kaygorodova LI, Domashnikov VP (1989) Fiz Metal Metalloved 68:792

    CAS  Google Scholar 

  17. Dupasquier A, Somoza A (1995) Mater Sci Forum 175–178:35 and references therein

    Google Scholar 

  18. Mukherjee P, Nambissan PMG, Sen P, Barat P, Bandyopadhyay SK (1999) J Nucl Mater 273:238

    Article  Google Scholar 

  19. Dlubek G (1987) Mater Sci Forum 13–14:11

    Article  Google Scholar 

  20. Banerjee MK, Datta S (2000) J Mater Charac 44:277

    Article  CAS  Google Scholar 

  21. Kirkegaard P, Eldrup M, Mogensen OE, Pedersen NJ (1981) Comput Phys Commun 23:307

    Article  CAS  Google Scholar 

  22. Sachdeva A, Sudarshan K, Pujari PK, Goswami A, Sreejith K, George VC, Pillai CGS, Dua AK (2004) Diam Relat Mater 13:1719

    Article  CAS  Google Scholar 

  23. Mackenzie IK (1983) In: Brandt W, Dupasquier A (eds) Positron solid state physics. North Holland, Amsterdam, p 196

  24. Puska MJ, Nieminen RM (1983) J Phys F Met Phys 13:333

    Article  CAS  Google Scholar 

  25. Hautojarvi P, Corbel C (1995) In: Dupasquier A, Mills AP Jr (eds) Positron spectroscopy of solids. Ios Press, Amsterdam, p 491

    Google Scholar 

  26. Bergersen B, Pajanne E, Kubica K, Stott MJ, Hodges CH (1974) Solid St Commun 15:1337

    Article  Google Scholar 

  27. Rodda JL, Stewart MG (1963) Philos Mag 131:255

    CAS  Google Scholar 

  28. Kaygorodova LI, Domashnikov VP, Shashkov OD (1989) Fiz Metal Metalloved 67:786

    Google Scholar 

  29. Kasier MS, Banerjee MK (2006) Indian Foundry J 52:29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. G. Nambissan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, M.S., Nambissan, P.M.G., Banerjee, M.K. et al. Positron lifetime studies and coincidence Doppler broadening spectroscopy of Al–6Mg–xSc (x = 0 to 0.6 wt.%) alloy. J Mater Sci 42, 2618–2629 (2007). https://doi.org/10.1007/s10853-006-1342-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1342-7

Keywords

Navigation