Advertisement

Journal of Materials Science

, Volume 42, Issue 19, pp 7983–7990 | Cite as

Melt-spun poly(tetrafluoroethylene) fibers

  • Matthias Goessi
  • Theo Tervoort
  • Paul Smith
Polymer Fibres 2006

Abstract

The recent discovery of melt-processable poly(tetrafluoroethylene) (PTFE) allows for common thermoplastic-polymer processing technologies to be applied to this unique polymer, which heretofore was considered to be highly intractable. In this paper, we report simple melt-spinning of monofilaments of a set of melt-processable (modified) PTFE grades with weight-average molar masses (M w) ranging from 77 to 292 kg/mol. Fibers were spun at 380 °C at draw-down ratios of up to 2,750, yielding filaments of linear densities as low as 0.8 tex, corresponding to a diameter of ∼20 μm. The maximum Young’s modulus and tensile strength of as-spun fibers produced in this study were 91.7 cN/tex (1,972 MPa) and 12.0 cN/tex (258 MPa), respectively, accompanied by a strain to break of 24%.

Keywords

PTFE Draw Ratio Linear Density Extrusion Rate Molar Mass Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Samples were provided by Dr. F. Kloos and Dr. G. Löhr (Dyneon, Germany). The authors are grateful for stimulating discussions with Prof. Dr. Ir. H.E.H. Meijer (Eindhoven University of Technology, The Netherlands), as well as for the experimental assistance of Messrs. Marco Sigrist and Raphael Heeb (ETH Zürich).

References

  1. 1.
    Scheirs J (1997) Modern fluoropolymers. John Wiley and Sons, NYGoogle Scholar
  2. 2.
    Berry KL (1951) US Patent 2,559,750Google Scholar
  3. 3.
    Monocrieff RW (1966) Man-made fibers. John Wiley and Sons, NY, p 512Google Scholar
  4. 4.
    Uno T, Miyata S, Shirai H (2002) J Appl Polym Sci 84:2366CrossRefGoogle Scholar
  5. 5.
    Endo R, Kanamoto T (2001) J Polym Sci Polym Phys Ed 39:1995CrossRefGoogle Scholar
  6. 6.
    Shimizu M, Ikeda C, Matsuo M (1996) Macromolecules 29:6724CrossRefGoogle Scholar
  7. 7.
    Smith P, Visjager J, Bastiaansen C, Tervoort T, US Patent 6,531,559 (2003); US Patent 6,548,612 (2003); US Patent 6,737,165 (2004)Google Scholar
  8. 8.
    Tervoort T, Visjager J, Graf B, Smith P (2000) Macromolecules 33:6460CrossRefGoogle Scholar
  9. 9.
    Goessi M, Tervoort T, Smith P, Characterization of Melt-processable Poly(tetrafluoroethylene) (to be published)Google Scholar
  10. 10.
    Bro MI, Sandt BW (1960) US Patent 2,946,763Google Scholar
  11. 11.
    Harris JF, McCane DI (1964) US Patent 3,132,123Google Scholar
  12. 12.
    Long SD, Ward IM (1991) J Appl Polym Sci 42:1911CrossRefGoogle Scholar
  13. 13.
    Kilian HG, Jenkel E (1959) Z Elektrochem 63:308Google Scholar
  14. 14.
    Starkweather HW Jr, Clark ES (1962) J Appl Polym Sci 24:41Google Scholar
  15. 15.
    Bulters MJH, Meijer HEH (1990) J Non-Newton Fluid Mech 38:43CrossRefGoogle Scholar
  16. 16.
    Crawford SM, Kolsky H (1951) Proc Phys Soc B 64:119CrossRefGoogle Scholar
  17. 17.
    Grün F, Kuhn W (1942) Kolloid Z 101:248CrossRefGoogle Scholar
  18. 18.
    Ward IM (1997) Structure and properties of oriented polymers, 2nd edn. John Wiley and Sons, NY, p 37Google Scholar
  19. 19.
    Irvine PA, Smith P (1986) Macromolecules 19:240CrossRefGoogle Scholar
  20. 20.
    Heffner GW, Uy WC, Wagner MG (2001) US Patent 6,207,275Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MaterialsETH ZurichZurichSwitzerland

Personalised recommendations