Skip to main content
Log in

Atmospheric pressure chemical vapor deposition of transparent conducting films of fluorine doped zinc oxide and their application to amorphous silicon solar cells

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transparent conducting ZnO:F was deposited as thin films on soda lime glass substrates by atmospheric pressure chemical vapor deposition (CVD) deposition at substrate temperatures of 480–500 °C. The precursors diethylzinc, tetramethylethylenediamine and benzoyl fluoride were dissolved in xylene. The solution was nebulized ultrasonically and then flash vaporized by a carrier gas of nitrogen preheated to 150 °C. Ethanol was vaporized separately, and these vapors were then mixed to form a homogeneous vapor mixture. Good reproducibility was achieved using this new CVD method. Uniform thicknesses were obtained by moving the heated glass substrates through the deposition zone. The best electrical and optical properties were obtained when the precursor solution was aged for more than a week before use. The films were polycrystalline and highly oriented with the c-axis perpendicular to the substrate. The electrical resistivity of the films was as low as 5 × 10−4 Ωcm. The mobility was about 45 cm2/Vs. The electron concentration was up to 3 × 1020/cm3. The optical absorption of the films was about 3–4% at a sheet resistance of 7 Ω/square. The diffuse transmittance was about 10% at a thickness of 650 nm. Amorphous silicon solar cells were deposited using the textured ZnO:F films as the front electrode. The short circuit current was increased over similar cells made with fluorine doped tin oxide, but the voltages and fill factors were reduced. The voltage was restored by overcoating the ZnO:F with a thin layer of SnO2:F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hickernell FS (1976) Proc IEEE 64:631

    Article  CAS  Google Scholar 

  2. Dutta S, Jackson HE, Boyd JT, Hickernell FS, Davis RL (1981) Appl Phys Lett 39:206

    Article  CAS  Google Scholar 

  3. Igasaki Y, Saito H (1991) J Appl Phys 70:3613

    Article  CAS  Google Scholar 

  4. Adachi K, Sato K, Gotoh Y, Nishimura H (1991) Proc of 22nd IEEE PVSC

  5. Shiosaki T, Yamamoto T, Yagi M, Kawabata A (1981) Appl Phys Lett 39:399

    Article  CAS  Google Scholar 

  6. Shiosaki T (1978) Proc IEEE Ultrasonics Symp 100

  7. Shiosaki T, Ohnishi S, Kawabata A (1979) J Appl Phys 50:3113

    Article  CAS  Google Scholar 

  8. Oda S, Tokunaga H, Kitajima N, Hanna J, Shimizu I, Kokado H (1985) Jap J Appl Phys 24:1607

    Article  CAS  Google Scholar 

  9. Smith FTJ (1983) Appl Phys Lett 43:1108

    Article  CAS  Google Scholar 

  10. Kim JS, Marzouk HA, Reucroft PJ, Harmin CE (1992) Thin Solid Films 217:133

    Article  CAS  Google Scholar 

  11. Shimizu M, Katayama T, Shiosaki T, Kawabata A (1990) J Cryst Growth 101:171

    Article  CAS  Google Scholar 

  12. Wieldraaijer W, van Balen Blanken J, Kupiers EW (1993) J Cryst Growth 126:305

    Article  CAS  Google Scholar 

  13. Souletie P, Bethke S, Wessels BW, Pan H (1988) J Cryst Growth 86:248

    Article  CAS  Google Scholar 

  14. Webb JW, Williams DW, Buchanan M (1981) Appl Phys Lett 39:640

    Article  CAS  Google Scholar 

  15. Minami T, Nanto H, Takata S (1982) Appl Phys Lett 41:958

    Article  CAS  Google Scholar 

  16. Exarhos GJ, Sharma SK (1995) Thin Solid Films 270:27

    Article  CAS  Google Scholar 

  17. Jacobsohn E, Shehtman D (1992) Mat Res Soc Symp Proc 242:779

    Article  CAS  Google Scholar 

  18. Brody DE, R Singh, Morgan JH, Lesli JD, Moore CJ, and A Dixon (1980) In: Proceedings of the 12th IEEE Photovoltaic Specialist Conference. IEEE, New York

  19. Kruncks M, Mellikov E (1995) Thin Solid Films 270:33

    Article  Google Scholar 

  20. Major S, Banergee A, Chopra KL (1986) J Mater Res 1:300

    Article  CAS  Google Scholar 

  21. Aranovich J, Ortiz A, Bube RH (1979) J Vac Sci Technol 16:9

    Article  Google Scholar 

  22. Hu J, Gordon RG (1991) Solar Cells 30:437

    Article  CAS  Google Scholar 

  23. Hu J, Gordon RG (1992) J Appl Phys 71:880

    Article  CAS  Google Scholar 

  24. Hu J, Gordon RG (1992) J Electrochem Soc 139:2014

    Article  CAS  Google Scholar 

  25. Sato H, Minami T, Miyata T, Ishii M (1994) Thin Solid Films 246:65

    Article  CAS  Google Scholar 

  26. Minami T, Sato H, Imamoto H, Takata S (1992) Jpn J Appl Phys 31:L257; Minami T, Sato H, Sonohara H, Takata S, Miyata T, Fukuda I (1994) Thin Solid Films 253:14

  27. Jin ZC, Hamberg I, Granqivst CG (1988) J Appl Phys 64:5117

    Article  CAS  Google Scholar 

  28. Aktaruzzman AF, Sharma GL, Malhotra LK (1991) Thin Solid Films 198:67

    Article  Google Scholar 

  29. Nishino J, S Ohshio, Kamata K (1992) J Am Ceram Soc 75:3469

    Article  CAS  Google Scholar 

  30. Tominaga K, Kataoka M, Ueda T, Chong M, Shintani Y, Mori I (1994) Thin Solid Films 253:9

    Article  CAS  Google Scholar 

  31. Hu J, Gordon RG (1992) J Appl Phys 72:5381

    Article  CAS  Google Scholar 

  32. Hirata GA, McKittric J, Cheeks T, Siqueiros JM, Diaz JA, Contreras O, Lopez OA (1996) Thin Solid Films 288:29

    Article  CAS  Google Scholar 

  33. Wang R, King LLH, Sleight A (1996) J Mater Res 11:1659

    Article  CAS  Google Scholar 

  34. Hu J, Gordon RG (1991) Mat Res Soc Symp Proc 283:891

    Article  Google Scholar 

  35. Olvera ML, Maldonado A, Asomoza R, Konagai M, Asomoza M (1993) Thin Solid Films 229:196

    Article  Google Scholar 

  36. Dana’s System of Mineralogy, 7th Ed I 504

  37. Nuffield EW (1966) X-ray diffraction methods. John Wiley & Sons, New York

    Google Scholar 

  38. Chopra KL, Major S, Pandya DK (1983) Thin Solid Films 102:1

    Article  CAS  Google Scholar 

  39. Gordon RG, Proscia J, Ellis FB, Delahoy AE (1989) Solar Energy Mater 18:263

    Article  CAS  Google Scholar 

  40. Ahmad Nuruddin, PhD Thesis, University of Illinois, 1997; Ahmad Nuruddin and John Abelson, unpublished results

Download references

Acknowledgements

This work was supported by the National Renewable Energy Laboratory. Steven Hegedus (Delaware) and David Carlson (Solarex) deposited and characterized the amorphous silicon solar cells. John Thornton, Keith Kramer, Dan Teff and Nicholas DiCeglie provided assistance in the chemical preparations and analyses. The authors would also like to thank Yuan Z. Lu, David Lange, and John Chervinsky for their assistance in making some of the characterization measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifan Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, H., Gordon, R.G. Atmospheric pressure chemical vapor deposition of transparent conducting films of fluorine doped zinc oxide and their application to amorphous silicon solar cells. J Mater Sci 42, 6388–6399 (2007). https://doi.org/10.1007/s10853-006-1255-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1255-5

Keywords

Navigation