Skip to main content
Log in

Structural and electrical properties of SiO2–Li2O–Nb2O5 glass and glass-ceramics obtained by thermoelectric treatments

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glass and glass-ceramics with the molar composition of 60SiO2–30Li2O–10Nb2O5 (mole %) were studied. Ferroelectric lithium niobate (LiNbO3) nanocrystals were precipitated in the glass matrix trough a thermal treatment, with and without the simultaneous application of an external electric field. The as-prepared sample, yellow and transparent, was heat-treated (HT) at 600 and 650 °C and thermoelectric treated (TET) at 600 °C. The applied electric fields were the following ones: (i) 5 × 104 V/m; (ii) 1 × 105 V/m. Differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman and dielectric spectroscopies were used to investigate the glass samples properties.

The LiNbO3 crystalline phase was detected in the 650 °C HT sample and in the 600 °C TET samples. The presence of an external electric field, during the heating process, promotes the glass crystallization at lower temperatures. In the TET samples, the surface crystallization of the cathode and the anode are different.

The number and size of the crystallites, in the glass network, dominate the electrical dc behavior while the ac conductivity process is more dependent of the glass matrix structure.

The obtained results reflect the important role carried out by the temperature and the applied electric field in the glass-ceramic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aboulleil MM, Leonberger FJ (1989) J Am Ceram Soc 72:1311

    Article  Google Scholar 

  2. Vogel EM (1989) J Am Ceram Soc 72:719

    Article  CAS  Google Scholar 

  3. Ding Y, Miura Y, Nakaoka S, Nanba T (1999) J Non-Cryst Solids 259:132

    Article  CAS  Google Scholar 

  4. Kim JE, Kim SJ, Ohshima K, Hwang YH, Yang YS (2004) Mater Sci Eng A 375–377:1255

    Article  Google Scholar 

  5. Weis RS, Gaylord TK (1985) Appl Phys A 37:191

    Article  Google Scholar 

  6. Kim HG, Komatsu T, Sato R, Matusita K (1994) J Non-Cryst Solids 162:201

    Article  Google Scholar 

  7. Graça MP, Ferreira da Silva MG, Valente MA (2002) Advan Mater Forum I, 161

  8. Graça MPF, Valente MA, Ferreira da Silva MG (2003) J Non-Cryst Solids 325: 267

    Article  Google Scholar 

  9. Graça MPF, Ferreira da Silva MG, Valente MA (2005) J Non-Cryst Solids 351:2951

    Article  Google Scholar 

  10. Martin SW, Angell CA (1986) J Non-Cryst Solids 83:185

    Article  CAS  Google Scholar 

  11. Macdonald JR (1987) Impedance spectroscopy. John Wiley & Sons, New York

    Google Scholar 

  12. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press, London

    Google Scholar 

  13. Chowdari BVR, Radhakrishnan K (1989) J Non-Cryst Solids 110: 101

    Article  CAS  Google Scholar 

  14. Kremer F, Schönhals A (2002) Broadband dielectric spectroscopy. Springer, Germany

    Google Scholar 

  15. Kim HG, Komatsu T, Sato R, Matusita K (1996) J Mater Sci 31: 2159

    Article  CAS  Google Scholar 

  16. Fuss T, Ray CS, Kitamura N, Makihara M, Day DE (2003) J Non-Cryst Solids 318: 157

    Article  CAS  Google Scholar 

  17. Yagi T, Susa M, Nagata K (2003) J Non-Cryst Solids 315:54

    Article  CAS  Google Scholar 

  18. Navarro JMF (1991) El vidrio. CSIC-Fundación Centro Nacional del Vidrio, Madrid

    Google Scholar 

  19. Kusz B, Trzebiatowski K, Barczynski RJ (2003) Solid State Ionics 159:293

    Article  CAS  Google Scholar 

  20. Zeng HC, Tanaka K, Hiaro K, Soga N (1997) J Non-Cryst Solids 209:112

    Article  CAS  Google Scholar 

  21. Gerth K, Rüsell C, Kending R, Schleevoigt P, Dunken H (1999) Phys Chem Glasses 40(3):135

    CAS  Google Scholar 

  22. Nassau K, Wang CA, Grasso M (1978) J Am Ceram Soc 62:503

    Article  Google Scholar 

  23. Shibuta N, Horigudhi M, Edahino T (1981) J Non-Cryst Solids 45:115

    Article  Google Scholar 

  24. Fukumi K, Sakka S (1988) J Mater Sci 23:2819

    Article  CAS  Google Scholar 

  25. Umesaki N, Iwamoto N, Tatsumisago M, Minami T (1988) J Non-Cryst Solids 106:77

    Article  CAS  Google Scholar 

  26. Hirano S, Yogo T, Kikuta K, Isobe Y (1993) J Mater Sci 28: 4188

    Article  CAS  Google Scholar 

  27. Andrade JS, Pinheiro AG, Vasconcelos IF, Sasaki JM, Paiva JAC, Valente MA, Sombra ASB (1999) J Phys Condens Matter 11: 4451

    Article  Google Scholar 

  28. Lipovskii AA, Tagantsev DK, Vetrov, Yanush OV (2003) Opt Mater 21:749

    Article  CAS  Google Scholar 

  29. Efimov AM (1999) J Non-Cryst Solids 253:95

    Article  CAS  Google Scholar 

  30. Cardinal T, Fargin E, Le Flem G, Leboiteux S (1997) J Non-Cryst Solids 222:228

    CAS  Google Scholar 

  31. Koné A, Barrau B, Souquet JL, Ribes M (1979) Mater Res Bull 14:393

    Article  Google Scholar 

  32. Matthias BT, Remaika JP (1951) Phys Rev 82 (5):727

    Article  CAS  Google Scholar 

  33. Cutroni M, Mandanici A (1998) Solid Sate Ionics, 105:149

    Article  CAS  Google Scholar 

  34. Zhang PX, Mitchell IV, Tong BY, Schultz PJ (1994) Phys Rev B 50(23):17080

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to the Fundação para a Ciência e Tecnologia (FCT), for the financial support (SFRH/BD/6314/2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. F. Graça.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graça, M.P.F., Ferreira da Silva, M.G. & Valente, M.A. Structural and electrical properties of SiO2–Li2O–Nb2O5 glass and glass-ceramics obtained by thermoelectric treatments. J Mater Sci 42, 2543–2550 (2007). https://doi.org/10.1007/s10853-006-1208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1208-z

Keywords

Navigation