Journal of Materials Science

, Volume 42, Issue 2, pp 465–471 | Cite as

Synthesis and characterization of ordered and cubic mesoporous silica crystals under a moderately acidic condition

  • Zhengwei Jin
  • Xiaodong Wang
  • Xiuguo Cui


Ordered and cubic mesoporous silica materials were synthesized by using poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymer as template under a moderately acidic condition of 0.5 mol/l HCl solution. These mesoporous materials were characterized by Fourier transform (FT) IR spectroscopy, thermo-gravimetric analysis (TGA), X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption–desorption measurements. The three-dimensional cage-like microporosity of the prepared mesoporous silica having ordered hexagonal mesoporous structure was evidenced by the well-defined XRD patterns combined with TEM photographs. SEM observation shows a highly regular cubic crystal structure for the prepared mesoporous silica. The size of these crystallites was maintained within the range between 4 and 6 μm, which is fairly important for the application to the stationary phase for separation. The nitrogen adsorption–desorption analysis reveals that the prepared mesoporous silica possesses a small pore diameter of 3.68 nm, a total surface area of 363.648 m2/g, a total pore volume of 0.379 cm3/g, and a pore-wall thickness of 6.63 nm. These features may lead to higher thermal and hydrothermal stability, excellent microporosity, and good connectivity. The mesoporous silica prepared in this study exhibits potential applications to catalysis, sensoring, and separation.


Mesoporous Silica Mesoporous Material Triblock Copolymer Silica Source Mesoporous Silica Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors greatly appreciate financial support from The National Nature Science Foundation of China (Grant No.: 50573006) and The Opening Fund of Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials.


  1. 1.
    Kresge CT, Leoniwics ME, Roth WJ, Vartuli JC, Beck JC (1992) Nature 359:710CrossRefGoogle Scholar
  2. 2.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834CrossRefGoogle Scholar
  3. 3.
    Liu P, Lee SH, Tracy TE, Yan Y, Turner JA (2002) Adv Mater 14:27CrossRefGoogle Scholar
  4. 4.
    Yamada Y, Zhao H, Uchida H, Tomita M, Ueno Y, Ichino T, Honmu I, Asai K, Katsube T (2004) Adv Mater 14:812CrossRefGoogle Scholar
  5. 5.
    Wirnsberger G, Yang P, Scott BJ, Chmelka BF, Stucky GD (2001) Spectrochim Acta A 57:2049CrossRefGoogle Scholar
  6. 6.
    Zhao D, Yang P, Melosh N, Feng J, Chmelka BF, Stucky GD (1998) Adv Mater 10:1380CrossRefGoogle Scholar
  7. 7.
    Schüth F, Schmidt W (2002) Adv Eng Mater 4:269CrossRefGoogle Scholar
  8. 8.
    Zhao D, Yang P, Huo Q, Chmelka BF, Stucky GD (1998) Curr Opin Colloid Interface Sci 3:174CrossRefGoogle Scholar
  9. 9.
    Zhao D, Feng J, Huo Q, Melosh N, Freddrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548CrossRefGoogle Scholar
  10. 10.
    Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024CrossRefGoogle Scholar
  11. 11.
    Kruk M, Jaroniec M, Sayari A (1999) Micropor Mesopor Mater 27:217CrossRefGoogle Scholar
  12. 12.
    Hunter HM, Wright PA (2001) Micropor Mesopor Mater 43:361CrossRefGoogle Scholar
  13. 13.
    Sakamoto Y, Kaneda M, Terasaki O, Zhao D, Kim JM, Stucky GD, Shin HJ, Ryoo R (2000) Nature 408:449CrossRefGoogle Scholar
  14. 14.
    Kim MJ, Ryoo R (1999) Chem Mater 11:487CrossRefGoogle Scholar
  15. 15.
    Dai LX, Tabata K, Suzuki E (2001) Chem Mater 13:208CrossRefGoogle Scholar
  16. 16.
    Stein A (2003) Adv Mater 15:763CrossRefGoogle Scholar
  17. 17.
    Mercier L, Pinnavaia TJ (1997) Adv Mater 9:500CrossRefGoogle Scholar
  18. 18.
    Kruk M, Antochshuk V, Matos JR, Mercuri LP, Jaroniec M (2002) J Am Chem Soc 124:768CrossRefGoogle Scholar
  19. 19.
    Yu C, Tian B, Fan J, Stucky GD, Zhao D (2002) J Am Chem Soc 124:4556CrossRefGoogle Scholar
  20. 20.
    Kruk M, Celer EB, Jaroniec M (2004) Chem Mater 16:698CrossRefGoogle Scholar
  21. 21.
    Cheng CF, Lin YC, Cheng HH, Chen YC (2003) Chem Phys Lett 382:496CrossRefGoogle Scholar
  22. 22.
    Dai LX, Tabata K, Suzuki E (2001) Chem Mater 13:208CrossRefGoogle Scholar
  23. 23.
    Voort PVD, Benjelloun M, Vansant EF (2002) J Phys Chem B 106:9027CrossRefGoogle Scholar
  24. 24.
    Messina P, Morini MA, Schulz PC (2004) Colloid Polym Sci 282:1063CrossRefGoogle Scholar
  25. 25.
    Ravikoviticth PI, Neimark AV (2002) Langmuir 18:1550CrossRefGoogle Scholar
  26. 26.
    Kruk M, Antochshuk V, Matos JR, Mercuri LP, Jaroniec M (2002) J Am Chem Soc 124:768CrossRefGoogle Scholar
  27. 27.
    Wang L, Fan J, Tian B, Yang H, Yu C, Tu B, Zhao D (2004) Micropor Mesopor Mater 67:135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, School of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.Department of Chemical Engineering and Polymer ScienceYanbian UniversityYanji CityChina

Personalised recommendations