Skip to main content
Log in

Preparation of luminescent nanosized NaEu(MoO4)2 incorporated in amorphous matrix originated from zeolite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel luminescent material has been prepared by the reaction of Eu3+ and molybdate species in the matrix of faujasite (FAU) type zeolite X and successive calcination. Eu3+ exchanged FAU was reacted with MoO3 in the solid-state at 723 K, giving a precursor. By calcining it at 1073 K, different crystalline phases were derived depending on MoO3-loading levels. Scheelite type crystal of NaEu(MoO4)2 was formed at high MoO3-loading levels, whereas europium sodalite was formed at low loading levels. For the former sample, X-ray diffraction analysis and transmission electron microscopy revealed that the nanosized NaEu(MoO4)2 was dispersed homogeneously within amorphous aluminosilicate matrix originated from FAU. The amorphous particles containing NaEu(MoO4)2 maintained the original morphology, which the starting FAU particles possessed. The emission intensity of nanosized NaEu(MoO4)2 in the matrix was one order higher than that of europium sodalite. The emission lifetime of nanosized NaEu(MoO4)2 (0.39 ms) in the matrix was longer than that of bulk NaEu(MoO4)2 (0.35 ms) fabricated by conventional solid-state processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jüstel T, Nikol H, Ronda C (1998) Angew Chem Int Ed 37:3085

    Article  Google Scholar 

  2. Vecht A, Gibbons C, Davies D, Jing XP, Marsh P, Ireland T, Silver J, Newport A, Barber D (1999) J Vac Sci Technol B 17:750

    Article  CAS  Google Scholar 

  3. Feldmann C, Jüstel T, Ronda C, Schmidt PJ (2003) Adv Funct Mater 13:511

    Article  CAS  Google Scholar 

  4. McKittrick J, Bacalski CF, Hirata GA, Hubbard KM, Pattillo SG, Salazar KV, Trkula M (2000) J Am Ceram Soc 83:1241

    Article  CAS  Google Scholar 

  5. Ye T, Zhao GW, Zhang WP, Xia SD (1997) Mater Res Bull 32:501

    Article  Google Scholar 

  6. Lee MH, Oh SG, Yi SC (2000) J Colloid Interface Sci 226:65

    Article  CAS  Google Scholar 

  7. Bhargava RN, Gallagher D, Welker T (1994) J Lumin 61:275

    Article  Google Scholar 

  8. Bhargava RN (1996) J Lumin. 70:85

    Article  CAS  Google Scholar 

  9. Weller H (1993) Angew Chem 105:43

    Article  CAS  Google Scholar 

  10. Alivisatos AP (1996) Science 271:933

    Article  CAS  Google Scholar 

  11. Capobianco JA, Vetrone F, D’Alesio T, Tessari G, Speghini A, Bettinelli M (2000) Phys Chem Chem Phys 2:3203

    Article  CAS  Google Scholar 

  12. Wada Y, Okubo T, Ryo M, Nakazawa T, Hasegawa Y, Yanagida S (2000) J Am Chem Soc 122:8583

    Article  CAS  Google Scholar 

  13. Ryo M, Wada Y, Okubo T, Nakazawa T, Hasegawa Y, Yanagida S (2002) J Mater Chem 12:1748

    Article  CAS  Google Scholar 

  14. Ryo M, Wada Y, Okubo T, Hasegawa Y, Yanagida S (2003) J Phys Chem B 107:11302

    Article  CAS  Google Scholar 

  15. Charnell JF (1971) J Crystal Growth 8:291

    Article  CAS  Google Scholar 

  16. Schoeman BJ, Sterte J, Otterstedt JE (1994) Zeolites 14:110

    Article  CAS  Google Scholar 

  17. Persson AE, Schoeman BJ, Sterte J, Otterstedt JE (1994) Zeolites 14:557

    Article  CAS  Google Scholar 

  18. Baker MD, Olken MM, Ozin GA (1988) J Am Chem Soc 110:5709

    Article  CAS  Google Scholar 

  19. Kynast U, Weiler V (1994) Adv Mater 6:937

    Article  CAS  Google Scholar 

  20. Rosa ILV, Serra OA, Nassar EJ (1997) J Lumin 72:532

    Article  Google Scholar 

  21. Alvaro M, Fornes V, Garcia S, Scaiano JC (1998) J Phys Chem B 102:8744

    Article  CAS  Google Scholar 

  22. Borgmann C, Sauer J, Jüstel T, Kynast U, Schu¨th F (1999) Adv Mater 11:45

    Article  CAS  Google Scholar 

  23. Chen W, Samynaiken R, Huang Y (2000) J Appl Phys 88:16

    Google Scholar 

  24. Rocha J, Carlos LD, Rainho JP, Lin Z, Ferreira P, Almedia RM (2000) J Mater Chem 10:1371

    Article  CAS  Google Scholar 

  25. Jüstel T, Wiechert DU, Lau C, Sendor D, Kynast U (2001) Adv Funct Mater 11:105

    Article  Google Scholar 

  26. Sendor D, Kynast U (2002) Adv Mater 14:1570

    Article  CAS  Google Scholar 

  27. Dexpert-Ghys J, Picard C, Taurines A (2001) J Inclusion Phenom Macrocyclic Chem 39:261

    Article  CAS  Google Scholar 

  28. Ananias D, Ferreira A, Rocha J, Ferreira P, Rainho JP, Morais C, Carlos D (2001) J Am Chem Soc 123:5735

    Article  CAS  Google Scholar 

  29. Schmechel R, Kennedy M, von Seggern H, Winkler H, Kolbe M, Fischer RA, Xaomao L, Benker A, Winterer M, Hahn H (2001) J Appl Phys 89:1679

    Article  CAS  Google Scholar 

  30. Hazenkamp MF, van der Veen AMH, Feiken N, Blasse G (1992) J Chem Soc Faraday Trans 88:141

    Article  CAS  Google Scholar 

  31. Thoret J, Man PP, Fraissard J (1995) J Chem Soc Faraday Trans 91:1037

    Article  CAS  Google Scholar 

  32. Schieber M, Holmes L (1964) J Appl Phys 35:1004

    Article  CAS  Google Scholar 

  33. Macalik L, Hanuza J, Macalik B, Strek W (1996) Eur J Solid State Inorg Chem 33:397

    CAS  Google Scholar 

  34. Wei-Wei Z, Mei X, Wei-Ping Z, Min Y, Ze-Ming Q, Shang-Da X, Garapon C (2003) Chem Phys Lett 376:318

    Article  Google Scholar 

  35. Capobianco JA, D’Aleso T, Tessari G, Speghini A, Bettinelli M (2000) Phys Chem Chem Phys 2:3203

    Article  CAS  Google Scholar 

  36. Hase T, Kano T, Nakazawa E, Yamamoto H (1990) Adv Electron Electron Phys 79:271

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the members of Analytical Laboratory of Tokan Material Technology Co., Ltd. for help with the chemical analysis. This work was supported by a Grant-in-Aid for Scientific Research (No. 12450345) and a Grant-in-Aid for Scientific Research Areas (417) (No. 15033245) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, S., Ryo, M., Yamamoto, T. et al. Preparation of luminescent nanosized NaEu(MoO4)2 incorporated in amorphous matrix originated from zeolite. J Mater Sci 42, 5991–5998 (2007). https://doi.org/10.1007/s10853-006-1127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1127-z

Keywords

Navigation