Advertisement

Melting and crystallization of UHMWPE skived film

  • Armando Almendarez Camarillo
  • Stephan Volkher Roth
  • Peter Bösecke
  • Stefan Buchner
  • Klaus Krenn
  • Rainer Gehrke
  • Norbert Stribeck
Article

Abstract

Commercial skived film from ultra-high molecular-weight polyethylene (UHMWPE) with considerable uniaxial orientation of lamellae is studied by ultra-small-angle X-ray scattering (USAXS) and wide-angle X-ray scattering (WAXS) during melting and crystallization in order to identify its mechanisms of crystallization. For the analysis of the nanostructure two-dimensional USAXS patterns are analyzed by means of the multidimensional chord distribution function (CDF) method. WAXS shows that crystallization is always isotropic and fast. WAXS reflections are observed before—under certain processing conditions—the SAXS pattern becomes anisotropic. Thus crystallization is decoupled from a slower process of oriented nanostructure formation (nanoforming). If nanoforming is performed isothermally at 105 °C, the evolving nanodomain layers obtain some preferential orientation, as long as the orientation of the melt has not previously been erased by melt-annealing at temperatures of 140 °C or above. Crystallization at temperatures ≥110 °C followed by quenching leads to isotropic nanostructure. Although crystallization is always observed early in the WAXS patterns, the USAXS patterns exhibit only weak discrete scattering during isothermal treatment at temperatures of 110 °C and higher. At 105 °C anisotropic isothermal nanoforming starts after 1.5 min. The melting of the original material resembles an inverted random car-parking mechanism. Only next-neighbor correlations are observed among the crystalline layers. The average nanodomain layer thickness is only slightly increasing (26–30 nm), whereas the long period increase is strong (from 60 nm to 140 nm).

Keywords

UHMWPE Isothermal Crystallization WAXS Pattern Nanostructure Formation SAXS Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge HASYLAB, Hamburg, for provision of the synchrotron radiation facilities at beamline BW4 in the frame of project II-04-039. In particular the support of the beamline engineers M. Dommach and R. Döhrmann is greatly appreciated. ESRF, Grenoble is acknowledged for provision of synchrotron radiation facilities at beamline ID02 in the frame of project SC-1679. Financial support of this study by the Deutsche Forschungsgemeinschaft (DFG STR501/4-1) is gratefully acknowledged.

References

  1. 1.
    Heck B, Hugel T, Iijima M, Sadiku E, Strobl G (1999) New J Phys 1:17.1Google Scholar
  2. 2.
    Heck B, Hugel T, Iijima M, Strobl G (2000) Polymer 41:8839CrossRefGoogle Scholar
  3. 3.
    Heeley EL, Maidens AV, Olmsted PD, Bras W, Dolbnya IP, Fairclough JPA, Terrill NJ, Ryan AJ (2003) Macromolecules 36:3656CrossRefGoogle Scholar
  4. 4.
    Bras W, Dolbnya I, Detollenaere D, van Tol R, Malfois M, Greaves G, Ryan A, Heeley E (2003) J Appl Cryst 36:791CrossRefGoogle Scholar
  5. 5.
    Somani RH, Yang L, Hsiao BH, Fruitwala H (2003) J Macromol Sci Part B Phys B42:515CrossRefGoogle Scholar
  6. 6.
    Somani RH, Yang L, Hsiao BS, Agarwal PK, Fruitwala HA, Tsou AH (2002) Macromolecules 35:9096CrossRefGoogle Scholar
  7. 7.
    Yamazaki S, Hikosaka M, Toda A, Wataoka I, Yamada K, Tagashira K (2003) J Macromol Sci Part B: Phys B42:499CrossRefGoogle Scholar
  8. 8.
    Allegra G, Meille SV (1999) Phys Chem Chem Phys 1:5179CrossRefGoogle Scholar
  9. 9.
    Pearce R, Vancso GJ (1998) Polymer 39:1237CrossRefGoogle Scholar
  10. 10.
    Hobbs JK, Humphris ADL, Miles MJ (2001) Macromolecules 34:5508CrossRefGoogle Scholar
  11. 11.
    Humphris ADL, Hobbs JK, Miles MJ (2003) Appl Phys Lett 83:6CrossRefGoogle Scholar
  12. 12.
    Stribeck N (1993) Colloid Polym Sci 271:1007CrossRefGoogle Scholar
  13. 13.
    Stribeck N (2000) ACS Symp Ser 739:41CrossRefGoogle Scholar
  14. 14.
    Stribeck N (2001) J Appl Cryst 34:496CrossRefGoogle Scholar
  15. 15.
    Stribeck N (2002) Colloid Polym Sci 280:254CrossRefGoogle Scholar
  16. 16.
    Stribeck N, Almendarez Camarillo A, Cunis S, Bayer RK, Gehrke R (2004) Macromol Chem Phys 205:1445CrossRefGoogle Scholar
  17. 17.
    Stribeck N (2004) Macromol Chem Phys 205:1455CrossRefGoogle Scholar
  18. 18.
    Stribeck N, Almendarez Camarillo A, Bayer R (2004) Macromol Chem Phys 205:1463CrossRefGoogle Scholar
  19. 19.
    Stribeck N, Bayer R, Bösecke P, Almendarez Camarillo A (2005) Polymer 46:2579CrossRefGoogle Scholar
  20. 20.
    Stribeck N, Bösecke P, Bayer R, Almendarez Camarillo A (2005) Progr Coll Polym Sci 130:127Google Scholar
  21. 21.
    Bösecke P, Diat O (1997) J Appl Cryst 30:867CrossRefGoogle Scholar
  22. 22.
    VNI “pv-wave manuals” V 7.5 (2001), Boulder, ColoradoGoogle Scholar
  23. 23.
    Bonart R (1966) Kolloid Z u Z Polymere 211:14CrossRefGoogle Scholar
  24. 24.
    Fischer EW (1969) Colloid Polym Sci 231:458Google Scholar
  25. 25.
    Buhmann MD (2000) Acta Num 9:1CrossRefGoogle Scholar
  26. 26.
    Stribeck N (2003) Anal Bioanal Chem 376:608CrossRefGoogle Scholar
  27. 27.
    Stribeck N, Buzdugan E, Ghioca P, Serban S, Gehrke R (2002) Macromol Chem Phys 203:636CrossRefGoogle Scholar
  28. 28.
    Stribeck N, Bayer R, von Krosigk G, Gehrke R (2002) Polymer 43:3779CrossRefGoogle Scholar
  29. 29.
    Stribeck N (2003) Fibr Text EE 11:33Google Scholar
  30. 30.
    Stribeck N, Androsch R, Funari SS (2003) Macromol Chem Phys 204:1202CrossRefGoogle Scholar
  31. 31.
    Stribeck N, Fakirov S, Apostolov AA, Denchev Z, Gehrke R (2003) Macromol Chem Phys 204:1000CrossRefGoogle Scholar
  32. 32.
    Stribeck N, Funari SS (2003) J Polym Sci Part B: Polym Phys 41:1947CrossRefGoogle Scholar
  33. 33.
    Stribeck N, Fakirov S (2001) Macromolecules 34:7758CrossRefGoogle Scholar
  34. 34.
    Vonk CG (1979) Colloid Polym Sci 257:1021CrossRefGoogle Scholar
  35. 35.
    Ruland W (1977) Colloid Polym Sci 255:417CrossRefGoogle Scholar
  36. 36.
    Ruland W (1978) Colloid Polym Sci 256:932CrossRefGoogle Scholar
  37. 37.
    Stribeck N, Ruland W (1978) J Appl Cryst 11:535CrossRefGoogle Scholar
  38. 38.
    Porod G (1972) Monatsh Chem 103:395CrossRefGoogle Scholar
  39. 39.
    Cohen Y, Thomas EL (1987) J Polym Sci, Part B: Polym Phys B25:1607CrossRefGoogle Scholar
  40. 40.
    Rényi A (1958) Publ Math Inst Budapest 3:109Google Scholar
  41. 41.
    Rényi A (1963) Sel Transl Math Stat Prob 4:203Google Scholar
  42. 42.
    Burgos E, Bonadeo H (1987) J Phys A 20:1193CrossRefGoogle Scholar
  43. 43.
    Bonnier B, Boyer D, Viot P (1994) J Phys A 27:3671CrossRefGoogle Scholar
  44. 44.
    Schultz JM, Lin JS, Hendricks RW (1978) J Appl Cryst 11:551CrossRefGoogle Scholar
  45. 45.
    Schultz JM, Fischer EW, Schaumburg O, Zachmann HG (1980) J Polym Sci Polym Phys 18:239CrossRefGoogle Scholar
  46. 46.
    Evans JW (1993) Rev Mod Phys 65:1281CrossRefGoogle Scholar
  47. 47.
    Hugel T, Strobl G, Thomann R (1999) Acta Polym 50:214CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Armando Almendarez Camarillo
    • 1
  • Stephan Volkher Roth
    • 2
  • Peter Bösecke
    • 3
  • Stefan Buchner
    • 4
  • Klaus Krenn
    • 5
  • Rainer Gehrke
    • 2
  • Norbert Stribeck
    • 1
  1. 1.Institute of Technical and Macromolecular ChemistryUniversity of HamburgHamburgGermany
  2. 2.HASYLAB at DESYHamburgGermany
  3. 3.ESRFGrenoble Cedex 9France
  4. 4.Polymer Consult GmbHHamburgGermany
  5. 5.Isosport GmbHEisenstadtAustria

Personalised recommendations