Advertisement

Journal of Materials Science

, Volume 42, Issue 14, pp 5524–5533 | Cite as

Preparation and characterization of poly (styrene-acrylonitrile) (SAN)/clay nanocomposites by melt intercalation

  • Yibing Cai
  • Yuan Hu
  • Shanyong Xuan
  • Yi Zhang
  • Huaxia Deng
  • Xinglong Gong
  • Zuyao Chen
  • Weicheng Fan
Article

Abstract

Poly (styrene-acrylonitrile) (SAN)/clay nanocomposites have been prepared by melt intercalation method from pristine montmorillonite (MMT), using hexadecyl trimethyl ammonium bromide (C16) and hexadecyl triphenyl phosphonium bromide (P16) as the reactive compatibilizers between polymer and clay. The influence of the reactive compatibilizers proportion relative to the clay on the structure and properties of the SAN/clay nanocomposites is investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM), high-resolution electron microscopy (HREM), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The effects of the two different clays (MMT and organic modified MMT) on the nanocomposites formation, morphology and property are also studied. The results indicate that the SAN cannot intercalate into the interlayers of the MMT and results in microcomposites. In the presence of the reactive compatibilizers, the dispersion of clay in SAN is rather facile and the SAN/clay nanocomposites reveal an intermediate morphology, an intercalated structure with some exfoliation and the presence of small tactoids. The appropriate proportion with 3 wt% reactive compatibilizers to 5 wt% MMT induces well-dispersed morphology and properties in the SAN matrix. The TGA analyses show that the thermal stability properties of the SAN/clay nanocomposites have been improved compared with those of the pristine SAN. The DMA results show that the storage modulus and glass transition temperature (Tg) of the SAN/clay nanocomposites have remarkably enhancements compared with the pristine SAN. At last the intercalation mechanism of the technology is discussed.

Keywords

Cationic Surfactant Silicate Layer Char Residue Clay Dispersion Clay Nanocomposites 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (No. 50476026), Specialized Research Fund for the Doctoral Program of Higher Education (20040358056) and Program for New Century Excellent Talents in University.

References

  1. 1.
    Gilman JW, Jakson CL, Morgan AB, Harris RH, Manias E, Giannelis EP, Wuthenow M, Hilton D, Philips SH (2000) Chem Mater 12:1866CrossRefGoogle Scholar
  2. 2.
    Devaux E, Bourbigot S, El Achari A (2002) J Appl Polym Sci 86:2416CrossRefGoogle Scholar
  3. 3.
    Lan T, Kaviratna PD, Pinnavaia TJ (1994) Chem Mater 6:573CrossRefGoogle Scholar
  4. 4.
    Alexander M, Dubois P (2000) Mater Sci Eng 28:1CrossRefGoogle Scholar
  5. 5.
    Kim TH, Jang LW, Lee DC, Choi HJ, Jhon MS (2002) Macromol Rapid Commun 23:191CrossRefGoogle Scholar
  6. 6.
    Lim ST, Lee CH, Choi HJ, Jhon MS (2003) J Polym Sci Polym Phys 41:2052CrossRefGoogle Scholar
  7. 7.
    Chu LL, Anderson SK, Harris JD, Beach MW, Morgan AB (2004) Polymer 45:4051CrossRefGoogle Scholar
  8. 8.
    Bourbigot S, Vanderhart DL, Gilman JW, Bellayer S, Stretz H, Paul DR (2004) Polymer 45:7627CrossRefGoogle Scholar
  9. 9.
    Bok NJ, Wilie CA (2005) Polymer 46:9702CrossRefGoogle Scholar
  10. 10.
    Stretz HA, Paul DR, Li R, Keskkula H, Cassidy PE (2005) Polymer 46:2621CrossRefGoogle Scholar
  11. 11.
    Kim JW, Choi HJ, Jhon MS (2000) Macromol Symp 155:229CrossRefGoogle Scholar
  12. 12.
    Kim JW, Jang LW, Choi HJ, Jhon MS (2003) J Appl Polym Sci 89:821CrossRefGoogle Scholar
  13. 13.
    Wang HW, Chang KC, Chu HC (2005) Polym Int 54:114CrossRefGoogle Scholar
  14. 14.
    Alexander M, Beyer G, Henrist C, Cloots R (2000) Chem Mater 13:3830CrossRefGoogle Scholar
  15. 15.
    Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A (1997) Macromolecules 30:6333CrossRefGoogle Scholar
  16. 16.
    Hasegawa N, Kawasumi M, Kato M, Usuki A, Okada A (1998) J Appl Polym Sci 67:87CrossRefGoogle Scholar
  17. 17.
    Noh MH, Jang LW, Lee DC (1999) J Appl Polym Sci 74:179CrossRefGoogle Scholar
  18. 18.
    Vaia RA, Giannels EP (1997) Macromolecules 30:7990CrossRefGoogle Scholar
  19. 19.
    Vaia RA, Teukoisky RK, Giannelis EP (1994) Chem Mater 6:1017CrossRefGoogle Scholar
  20. 20.
    Tang Y, Hu Y, Wang JZ (2004) J Appl Polym Sci 91:2416CrossRefGoogle Scholar
  21. 21.
    Anna CB, Chandralekha S (1998) Macromolecules 31:8370CrossRefGoogle Scholar
  22. 22.
    Yulia L, Anna CB (1998) Macromolecules 31:6676CrossRefGoogle Scholar
  23. 23.
    Valeriy VG, Chandralekha S, Anna CB (2000) Macromolecules 33:1089CrossRefGoogle Scholar
  24. 24.
    Vaia RA, Giannelis EP (1997) Macromolecules 30:8000CrossRefGoogle Scholar
  25. 25.
    Xie W, Xie R, Pan WP, Hunter D, Koene B, Tan LS, Vaia R (2002) Chem Mater 14:4837CrossRefGoogle Scholar
  26. 26.
    Gilman JW, Awad WH, Davis RD, Shields J (2002) Chem Mater 14:3776CrossRefGoogle Scholar
  27. 27.
    Zhu J, Morgan AB, Lamelas FJ, Wilkie CA (2001) Chem Mater 13:3774CrossRefGoogle Scholar
  28. 28.
    Gilman JW, Kashivagi TCL, Giannelis EP, Manias E, Lomakin S, Lichtenhan JD (1998) In: Le Bras M, Caniino G, Bourbigot S, Delobel R (eds) Fire retardancy of polymers. The Royal Society of Chemistry, CambridgeGoogle Scholar
  29. 29.
    Choi YS, Xu MZ, Chung IJ (2003) Polymer 44:6989CrossRefGoogle Scholar
  30. 30.
    Choi YS, Choi MH, Wang KH, Kim SO, Kim YK, Chung IJ (2001) Macromolecules 34:8978CrossRefGoogle Scholar
  31. 31.
    Ishida H, Campbell S, Blackwell J (2000) Chem Mater 12:1260CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yibing Cai
    • 1
  • Yuan Hu
    • 1
  • Shanyong Xuan
    • 1
  • Yi Zhang
    • 1
  • Huaxia Deng
    • 2
  • Xinglong Gong
    • 2
  • Zuyao Chen
    • 3
  • Weicheng Fan
    • 1
  1. 1.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiP.R. China
  2. 2.CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Mechanics and Mechanical EngineeringUniversity of Science and Technology of ChinaHefeiP.R. China
  3. 3.Department of ChemistryUniversity of Science and Technology of ChinaHefeiP.R. China

Personalised recommendations