Advertisement

Journal of Materials Science

, Volume 42, Issue 1, pp 80–86 | Cite as

Preparation of gold nanoparticles (GNP) aqueous suspensions by a new method involving Tiron

  • Mamiko Hori
  • Cécile Pagnoux
  • Jean-François Baumard
  • Masayuki Nogami
Article

Abstract

A new method is proposed to produce gold nanoparticles (GNP) by in situ reduction of a gold salt dissolved in water. The reducing agent used is Tiron instead of the citrate anion most often mentioned in literature. The influence of various parameters has been investigated, such as the content of Tiron with respect to that of the precursor of gold HAuCl4, or the initial pH of the solution after mixing of reactants. It is shown that Tiron also exerts a positive influence as a dispersant, which impedes agglomeration of gold nanoparticles. The typical average size of GNP synthesized in the present work is close to 7 nm.

Keywords

Gold Nanoparticles Photon Correlation Spectroscopy HAuCl4 Tiron Photon Correlation Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Warner MG, Hutchison JE (2003) In: Baratoned MI (ed) Synthesis and assembly of functionalized Gold Nanoparticles, ‘Synthesis Functionalization and Surface Treatment of Nanoparticles’. American Scientific Publishers, USA, p 67Google Scholar
  2. 2.
    Daniel MC, Astruc D (2004) Chem Rev 104:293CrossRefGoogle Scholar
  3. 3.
    Liz-Marzán LM (2004) Mater Today 7:26CrossRefGoogle Scholar
  4. 4.
    Turkevitch J, Stevenson PC, Hillier J (1951) Discuss Faraday Soc 11:55CrossRefGoogle Scholar
  5. 5.
    Mirkin CA (2000) Inorg Chem 39:2258CrossRefGoogle Scholar
  6. 6.
    Frens G (1973) Nature: Phys Sci 241:20Google Scholar
  7. 7.
    Luther EP, Yanez JA, Franks GV, Lange FF, Pearson DS (1995) J Am Ceram Soc 78:1495CrossRefGoogle Scholar
  8. 8.
    Gauckler LJ, Graule TH, Baader F (1999) Mater Chem Phys 61:78CrossRefGoogle Scholar
  9. 9.
    Pagnoux C (2002) J Ceram Process Res 3:10Google Scholar
  10. 10.
    Laucournet R, Pagnoux C, Chartier T, Baumard JF (2000) J Am Ceram Soc 83:2661CrossRefGoogle Scholar
  11. 11.
    Lebrette S, Pagnoux C, Abélard P (2004) J Colloid Interface Sci 280:400CrossRefGoogle Scholar
  12. 12.
    Rein FN, Rocha RC, Toma HE (2000) J Electroanal Chem 494:21CrossRefGoogle Scholar
  13. 13.
    Giesbers M, Kleijn JM, Stuart MAC (2002) J Colloid Interface Sci 248:88CrossRefGoogle Scholar
  14. 14.
    Laucournet R, Pagnoux C, Chartier T, Baumard JF (2001) J Eur Ceram Soc 21:869CrossRefGoogle Scholar
  15. 15.
    Hidber PC, Graule TJ, Gauckler LJ (1996) J Am Ceram Soc 79:1857CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Mamiko Hori
    • 1
    • 2
  • Cécile Pagnoux
    • 1
  • Jean-François Baumard
    • 1
  • Masayuki Nogami
    • 2
  1. 1.SPCTS, UMR CNRS 6638, ENSCILimoges CedexFrance
  2. 2.Department of Materials Science and EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations