Skip to main content
Log in

Low-cycle fatigue behavior of AISI 347 stainless steel in salt water

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the influence of strain ratio, frequency, and waveform on low cycle fatigue (LCF) behavior of AISI 347 stainless steel in air and NaCl solution. Results showed that at high strain amplitude region the fatigue lives in both environments were comparable, implying a lack of environmental effect due to insufficient amount of local dissolution. However, at low strain amplitude region, a corrosive effect did exist and the fatigue lives in NaCl solution were decreased with an increase in strain ratio to a greater extent, as compared to those in air. This might be attributed to a tensile-mean-stress effect and its interaction with an enhanced, localized corrosive reaction. The degree of influence of the aggressive salt water on the LCF life was not increased as the loading frequency was reduced or a hold time was added at the tensile peak strain. The LCF life data in the given environments at various strain ratios could be well correlated by a modified SWT model as well as a modified Manson-Halford model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Smith WF (1993) Structure and Properties of Engineering Alloys, 2nd Ed. McGraw Hill, Inc., New York, p 317

  2. Ben-Haroe I, Rosen A, Hall IW (1993) Mater Sci Tech 9:620

    CAS  Google Scholar 

  3. Ayer R, Klein CF, Marzinsky CN (1992) Metall Trans A 23:2455

    Article  Google Scholar 

  4. Hickling J, Wieling N (1981) Corrosion 37:147

    CAS  Google Scholar 

  5. Schweinsberg DP, Sun B, Otieno-Alego V (1994) J Appl Electrochem 24:803

    Article  CAS  Google Scholar 

  6. Schweinsberg DP, Sun B, Cheng M, Flitt H (1993) J Appl Electrochem 23:1097

    Article  CAS  Google Scholar 

  7. Schweinsberg DP, Sun B, Cheng M, Flitt H (1994) Corrosion Sci 36:361

    Article  CAS  Google Scholar 

  8. Tyson W (1984) Metall Trans A 15:1475

    Article  Google Scholar 

  9. Rozenak P, Eliezer D (1983) Mater Sci Eng 61:31

    Article  CAS  Google Scholar 

  10. Rozenak P, Eliezer D (1989) Metall Trans A 20:2187

    Article  Google Scholar 

  11. Rozenak P (1990) J Mater Sci 25:2532

    Article  CAS  Google Scholar 

  12. Gladwin DN, Priest RH, Miller DA (1989) Mater Sci Tech 5:40

    CAS  Google Scholar 

  13. Senior BA (1990) Mater Sci Eng A130:51

    CAS  Google Scholar 

  14. Senior BA, Maguire J, Evans CA (1991) Mater Sci Eng A138:103

    CAS  Google Scholar 

  15. Ortner SR, Hippsley CA (1992) Mater Sci Tech 8:883

    CAS  Google Scholar 

  16. Ortner SR, Hippsley CA (1995) Mater Sci Tech 11:998

    CAS  Google Scholar 

  17. Asm International Handbook Committee (1990) In: Metals Handbook, 10th Ed., vol 1, Properties and Selection: Irons, Steels, and High-Performance Alloys. ASM International, Materials Park, OH, USA, p 870

  18. Lin C-K, Lan I-L (2004) J Mater Sci 39:6901

    Article  CAS  Google Scholar 

  19. Magnin T, Coudreuse L (1985) Mater Sci Eng 72:125

    Article  CAS  Google Scholar 

  20. Jones DA (1996) Principles and Prevention of Corrosion, 2nd Ed. Prentice Hall, Upper Saddle River, NJ, USA, p 209

  21. Bayoumi MR (1993) Eng Fract Mech 45:297

    Article  Google Scholar 

  22. Fang D, Berkovits A (1994) Inter J Fatigue 16:429

    Article  CAS  Google Scholar 

  23. Pyle T, Rollins V, Howard D (1975) J Electrochem Soc 122:1445

    Article  CAS  Google Scholar 

  24. Coffin LF (1954) Trans ASME 76:931

    CAS  Google Scholar 

  25. Mason SS (1953) Heat Transfer Symposium. University of Michigan Engineering Research Institute, Ann Arbor, MI, USA, p 9

    Google Scholar 

  26. Manson SS, Halford GR (1981) Inter J Fract 17:169 and R35

    Google Scholar 

  27. Smith KN, Watson P, Topper TH (1970) J Mater 5:767

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Council and Atomic Energy Council of the Republic of China (Taiwan) under Contract Nos. NSC-90-2623-7-008-006-NU and NSC 91-2623-7-008-001-NU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Kuang Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CK., Chiu, CH. Low-cycle fatigue behavior of AISI 347 stainless steel in salt water. J Mater Sci 42, 40–49 (2007). https://doi.org/10.1007/s10853-006-1038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1038-z

Keywords

Navigation