Journal of Materials Science

, Volume 41, Issue 24, pp 8265–8270 | Cite as

Chemical beam epitaxial growth of GaInP using uncracked trisdimethylaminophosphine

  • H. H. Ryu
  • M. H. Jeon
  • J. Y. Leem
  • H. J. Song
  • L. P. Sadwick
  • G. B. Stringfellow


Gallium indium phosphide (Ga x In1−x P) epitaxial layers were grown on GaAs substrates by chemical beam epitaxy (CBE) without thermally precracking the group V precursor. Trisdimethylaminophosphine (TDMAP), triisopropylgallium (TIPGa), and ethyldimethylindium (EDMIn) were used as the phosphorus, gallium and indium sources, respectively. Ga x In1−x P was grown without group V precracking for substrate temperatures in the range of 400–520 °C. Above 500 °C, the epilayers had a hazy appearance presumably due to being phosphorus deficit. A strong solid composition dependence on substrate temperature was observed. The samples were In-rich at low growth temperatures and Ga-rich at high growth temperatures. It was possible to grow the Ga x In1−x P epilayers over a large composition range with good morphology and strong photoluminescence. Values of full width at half maximum were as low as 45 meV at 14 K photoluminescence measurements.


GaAs Substrate Temperature GaAs Substrate Lower Pyrolysis Temperature Chemical Beam Epitaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Stringfellow GB (1990) J Crystal Growth 105:260CrossRefGoogle Scholar
  2. 2.
    Biswas D, Debbar N, Bhattacharya P, Razeghi M, Defour M, Omnes F (1990) Appl Phys Lett 56:833CrossRefGoogle Scholar
  3. 3.
    Ozasa K, Yuri M, Tanaka S, Matsunami HJ (1989) Appl Phys 65:2711CrossRefGoogle Scholar
  4. 4.
    Maurel Ph, Bove Ph, Garcia JC, Hirtz JP, Razeghi M (1991) J Crystal Growth 107:1076CrossRefGoogle Scholar
  5. 5.
    Garcia JC, Maurel P, Bove P, Hirtz JP (1991) J Crystal Growth 111:578CrossRefGoogle Scholar
  6. 6.
    Abernathy CR, Wisk PW, Ren F, Pearton SJ, Jones AC, Rushworth SA (1993) J Appl Phys 73:2283CrossRefGoogle Scholar
  7. 7.
    Stringfellow GB (1989) Organometallic vapor phase epitaxy: theory and practice. Academic Press, BostoneGoogle Scholar
  8. 8.
    Chin A, Martin P, Das U, Mazurowski J, Ballingall J (1991) Appl Phys Lett 61:2099CrossRefGoogle Scholar
  9. 9.
    Chin A, Martin P, Das U, Mazurowski J, Ballingall J (1993) J Vac Sci Technol B11:847Google Scholar
  10. 10.
    Bohling DA, Abernathy CA, Jensen KF (1994) J Cryst Growth 136:118CrossRefGoogle Scholar
  11. 11.
    Sadwick L.P., Kim C.W., Hill C.W., Stringfellow G.B., Gedridge R.W. Jr, Jones A.C. (1994) Compound semiconductor epitaxy, MRS Proceedings, vol 340, p 167Google Scholar
  12. 12.
    Abernathy C.R., Bohling D.A., Muhr G.T, Wisk P.W. (1994) Compound semiconductor epitaxy, MRS Proceedings, vol 340, p 161Google Scholar
  13. 13.
    Martin T, Freer RW, Whitehouse CR, Lane PA (1994) J Crystal Growth 136:69CrossRefGoogle Scholar
  14. 14.
    Knauf J, Schmitz D, Strauch G, Jurgensen J, Heyen M, Melas A (1988) J Crystal Growth 93:34CrossRefGoogle Scholar
  15. 15.
    Stringfellow G.B. (1991) Tenth Record of Alloy Semiconductor Physics and Electronics Symposium, July 18–19, NagoyaGoogle Scholar
  16. 16.
    York PK, Beernink KJ, Kim J, Coleman JJ, Fernandez GE, Wayman CM (1989) Appl Phys Lett 55:2476CrossRefGoogle Scholar
  17. 17.
    Jones AC (1993) J Crystal Growth 129:728CrossRefGoogle Scholar
  18. 18.
    Ryu HH, Choi HL, Sadwick LP (2003) J Mater Sci 38:3663CrossRefGoogle Scholar
  19. 19.
    Garcia JCh, Maurel Ph, Bove Ph, Hitz JP (1991) J Appl Phys 69:3297CrossRefGoogle Scholar
  20. 20.
    Kapre RM, Tsang WT, Chen YK, Wu MC, Chin MA, Choa FS (1992) J Crystal Growth 124:176CrossRefGoogle Scholar
  21. 21.
    Allovon M, Primot J, Gao Y, Quillec M (1989) J Electron Mat 18:505Google Scholar
  22. 22.
    Biswas D, Lee H, Salvador A, Klein MV (1992) J Vac Sci Technol B10:962Google Scholar
  23. 23.
    Martin T, Freer RW, Whitehouse CR, Lane PA (1994) J Crystal Growth 136:69CrossRefGoogle Scholar
  24. 24.
    Freer RW, Martin T, Lane PA, Whitehouse CR, Hogan R, Foord JS, Jones AC (1993) J Crystal Growth 127:152CrossRefGoogle Scholar
  25. 25.
    Davies GL, Skeveington PJ, Morris JC, Jones AC, Rushworth S, Foord JS, Levoguer CL (1993) J Crystal Growth 136:133CrossRefGoogle Scholar
  26. 26.
    Levoguer CL, Foord JS, Davies GL, Skeveington PJ (1994) J Cryst Growth 136:109CrossRefGoogle Scholar
  27. 27.
    Yuan JS, Tsai MT, Chen CH, Cohen RM, Stringfellow GB (1986) J Appl Phys 60:1346CrossRefGoogle Scholar
  28. 28.
    Mowbray DJ, Kowalski OP, Sskolnick MS, Delong MC, Hopkinson M, David JPR, Cullis AG (1994) J Appl Phys 75:2029CrossRefGoogle Scholar
  29. 29.
    Cao DS, Kimball AW, Chen GS, Fry KL, Stringfellow GB (1989) J Appl Phys 66:5384CrossRefGoogle Scholar
  30. 30.
    Quigley JH, Hafich MJ, Lee HY, Stave RE, Robinson GY (1989) J Vac Sci Technol B7:358Google Scholar
  31. 31.
    Su YK, Wu MC, Chung CY, Cheng KY (1986) J Crystal Growth 76: 299CrossRefGoogle Scholar
  32. 32.
    Mowbray DJ, Kowalski OP, Skolnick MS, Delong MC, Hopkinson M, David JPR (1994) J Appl Phys 75:2029CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • H. H. Ryu
    • 1
  • M. H. Jeon
    • 1
  • J. Y. Leem
    • 1
  • H. J. Song
    • 1
  • L. P. Sadwick
    • 2
  • G. B. Stringfellow
    • 3
  1. 1.Center for Nano Manufacturing, School of Nano EngineeringInje UniversityObang-Dong, Gimhae-Shi, GyongnamKorea
  2. 2.Department of Electrical and Computer EngineeringThe University of UtahSalt Lake CityUSA
  3. 3.Department of Material Science & EngineeringThe University of UtahSalt Lake CityUSA

Personalised recommendations