Skip to main content
Log in

Coincidence-site lattices as rational approximants to irrational twins

Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is well known that sequences of crystals with Mackay icosahedral motif and increasing lattice parameters exist converging to the icosahedral quasicrystal in the limit. They are known as rational approximants. It has also been demonstrated that it is possible to create icosahedral symmetry by irrational twins involving five variants by 72° rotations around an irrational axis [τ 1 0] or an irrational angle of 44.48° around a rotation axis [1 1 1]. These twinned crystals do not share a coincidence site lattice. In this paper, it is demonstrated that the above twinning relationship arises in the limit of a sequence of coincidence site lattices starting with the cubic twins with Σ = 3 and extending through Σ = 7, 19, 49, 129, 337, …, ∞ created by rotation around [1 1 1] axis. It is also noted that the boundaries of higher CSL values (Σ > 7) are composed of a combination of structural units from Σ = 3 and Σ = 7 boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brandon DG, Ralph B, Ranganathan S, Wald MS (1964) Acta Metall 12:813

    Article  Google Scholar 

  2. Ranganathan S (1966) Acta Cryst 21:197

    Article  CAS  Google Scholar 

  3. Bishop GH, Chalmers B (1968) Scr Metall 2:133

    Article  Google Scholar 

  4. Sutton AP, Vitek V (1983) Philos Trans R Soc London Ser 309 A:1

    Article  Google Scholar 

  5. Christian JW, Mahajan S (1995) Prog Mater Sci 39:1

    Article  Google Scholar 

  6. Grimmer H, Nespolo M (2006) Z Kristallogr 221:28

    CAS  Google Scholar 

  7. Bendersky LA, Cahn JW, Gratias D (1989) Philos Mag 60B:837

    Article  Google Scholar 

  8. Pauling L (1987) Phys Rev Lett 58:365

    Article  CAS  Google Scholar 

  9. Pond RC, Bollmann W (1979) Philos Trans R Soc London Ser 292 A:449

    Article  Google Scholar 

  10. Friedel G, in “Lecons de cristallographie” (Paris 1926, 2nd ed. 1964, Libraire Sci. A. Blanhard, Paris, 1964)

  11. Koskenmaki DC, Chen HS, Rao KV (1986) Phys Rev 33 B:5328

    Article  Google Scholar 

  12. Mandal RK, Sastry GVS, Lele S, Ranganathan S (1991) Scr Metall Mater 25:1477

    Article  CAS  Google Scholar 

  13. Srivastava AK, Ranganathan S (1992) Scr Metall Mater 27:1241

    Article  CAS  Google Scholar 

  14. Lalla NP, Tiwari RS, Srivastava ON (1992) J Mater Res 7:53

    Article  CAS  Google Scholar 

  15. Singh A, Srivastava AK, Ranganathan S (1993) In: Krishnan KM (ed) Microstructure of materials. San Francisco Press, CA, p 152

  16. Srivastava AK, Ranganathan S (1996) Acta Mater 44:2935

    Article  CAS  Google Scholar 

  17. Srivastava AK, Ranganathan S (1997) Prog Cryst Growth Charact 34:251

    Article  CAS  Google Scholar 

  18. Srivastava AK, Ranganathan S (2001) J Mater Res 16:2103

    Article  CAS  Google Scholar 

  19. Bendersky LA, Cahn JM, J Mater Sci (2006, to be published)

  20. Ashby MF, Spaepen F, Williams S (1978) Acta Metall 26:1647

    Article  CAS  Google Scholar 

  21. Pond RC, Vitek V, Smith DA (1979) Acta Cryst 35A:689

    Article  Google Scholar 

  22. Paidar V (1987) Acta Metall 35:2035

    Article  Google Scholar 

  23. Dahmen U, Hetherington CJD, O’kee MA, Westmacott KH, Mills MJ, Daw MS, Vitek V (1990) Philos Mag Lett 62:327

    Article  Google Scholar 

  24. Mills MJ (1993) Mater Sci Eng 166 A:35

    Article  Google Scholar 

  25. Paidar V, Erhart J (1993) Interface Sci 1:115

    Article  CAS  Google Scholar 

  26. Shechtman D, Blech I, Gratias D, Cahn JW (1984) Phys Rev Lett 53:1951

    Article  CAS  Google Scholar 

  27. Chattopadhyay K, Ranganathan S, Subbanna GN, Thangaraj N (1985) Scr Metall 19:767

    Article  CAS  Google Scholar 

  28. Bendersky LA (1985) Phys Rev Lett 55:1461

    Article  CAS  Google Scholar 

  29. Goldman AI, Kelton KF (1993) Rev Mod Phys 65:213

    Article  Google Scholar 

  30. Chattopadhyay K, Lele S, Thangaraj N, Ranganathan S (1987) Acta Metall 35:727

    Article  CAS  Google Scholar 

  31. Lord E, Ranganathan S, Anandh Subrasmaniam (2002) Phil Mag 62:255

    Google Scholar 

  32. Cooper M, Robinson K (1966) Acta Cryst 20:614

    Article  CAS  Google Scholar 

  33. Bergman G, Waugh JLT, Pauling L (1957) Acta Cryst 10:254

    Article  CAS  Google Scholar 

  34. Mackay AL (1962) Acta Cryst 15:916

    Article  CAS  Google Scholar 

  35. Rivier N (1986) J Phys (Paris) 47:C3-299

    Article  Google Scholar 

  36. Sutton AP (1988) Acta Metall 36:1291

    Article  CAS  Google Scholar 

  37. Sutton AP (1992) Prog Mater Sci 36:167

    Article  CAS  Google Scholar 

  38. Gratias D, Thalal A (1988) Philos Mag Lett 57:63

    Article  Google Scholar 

  39. Lord EA, Kristallogr Z (2006, to be published)

Download references

Acknowledgements

The authors are grateful to Professor K. Chattopadhyay and Prof A L Mackay for valuable discussions. Figure 1 is after a discussion with Prof K F Kelton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ranganathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranganathan, S., Srivastava, A.K. & Lord, E.A. Coincidence-site lattices as rational approximants to irrational twins. J Mater Sci 41, 7696–7703 (2006). https://doi.org/10.1007/s10853-006-0966-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0966-y

Keywords

Navigation