Advertisement

Journal of Materials Science

, Volume 41, Issue 20, pp 6855–6860 | Cite as

Emission spectroscopy analysis for the non-destructive evaluation of the health of thermal barrier coatings

  • Guofeng Chen
  • Kang N. Lee
  • Surendra N. Tewari
Article

Abstract

Lithium oxide was selected as an emission spectroscopic marker in yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs). The spectral response of excited lithium atoms from dip-coated YSZ containing 5, 3, 1, and 0.3 wt.% lithium oxide and plasma-sprayed YSZ containing 1 wt% lithium oxide was examined under an oxy-acetylene flame. Results showed that the intensity of lithium emission spectrum is a function of the concentration of lithium oxide in the YSZ, the flame temperature, and the degree of TBC degradation. It indicates that an emission spectroscopy can be used to monitor the degradation of TBCs.

Keywords

Li2O Bond Coat Thermal Barrier Coating Yttria Stabilize Zirconia Flame Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work is supported by DOE UTSR Subcontract No. 03-01-SR106.

References

  1. 1.
    Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS (2001) Prog Mater Sci 46:505CrossRefGoogle Scholar
  2. 2.
    Padture NP, Gell M, Jordan EH (2002) Science 296:280CrossRefGoogle Scholar
  3. 3.
    Peng X, Clarke DR (2001) J Am Ceram Soc 83:1165CrossRefGoogle Scholar
  4. 4.
    Saunders SRJ, Banks JP, Chen GF, Chunnilall CJ (2004) Mater Sci Forum 461–464:383CrossRefGoogle Scholar
  5. 5.
    Nychka JA, Clarke DR, Sridharan S, Jordan EH, Gell M, Lance MJ, Chunnilall CJ, Smith IM, Saunders SRJ, Pillan R, Sergo V, Selcuk A, Atkinson A, Murphy KS (2003) Surf Coat Technol 163:87CrossRefGoogle Scholar
  6. 6.
    Sridharan S, Xie L, Jordan EH, Gell M (2004) Surf Coat Technol 179:286CrossRefGoogle Scholar
  7. 7.
    Sohn YH, Jayaraj B, Laxman S, Franke B, Byeon JW, Karlsson AM (2004) JOM 56:53Google Scholar
  8. 8.
    Jayaraj B, Desai VH, Lee CK, Sohn YH (2004) Mater Sci Eng A372:278Google Scholar
  9. 9.
    Madzsar GC, Bickford RL, Duncan DB (1992) Proc of the 28th AIAA/ASME/SAE/ASEE joint propulsion conference, Nashville, TN, 6–8 July 1992, pp 1–23Google Scholar
  10. 10.
    Paradis Paul-Francois (1997) 33rd AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, Seattle, WA, 6–9 July 1997, pp 1–12Google Scholar
  11. 11.
    Ramachandra C, Lee KN, Tewari SN (2004) J Am Ceram Soc 87:1117CrossRefGoogle Scholar
  12. 12.
    Alkemade CThJ, Herrmann R (1979) Fundamentals of analytical flame spectroscopy (translated from German by R Auerbach and Paul T Gilbert Jr). Wiley, New YorkGoogle Scholar
  13. 13.
    Dean JA, Rains TC (ed) (1969) Flame emission and atomic absorption spectrometry, vol. 1. Mercel Decker, EnglandGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Guofeng Chen
    • 1
  • Kang N. Lee
    • 1
    • 2
  • Surendra N. Tewari
    • 1
  1. 1.Chemical Engineering DepartmentCleveland State UniversityClevelandUSA
  2. 2.NASA Glenn Research CenterClevelandUSA

Personalised recommendations