Skip to main content
Log in

In situ imaging of ground granulated blast furnace slag hydration

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ground granulated blast furnace slag (GGBFS) reacts with water in the presence of calcium sulfates and alkalis and is frequently used as a partial replacement for portland cement in concrete. The hydration products are known to be slightly different compositionally and morphologically than those of pure portland cement hydration. In this study, a new technique, soft X-ray transmission microscopy, was used to image the hydration of slag in a variety of solutions to investigate the effects of alkali sulfate and hydroxide activators on the morphology of the resulting hydration products. This microscopy method is unique in that it enables high resolution in situ observation and documentation of the formation of hydration products over time in wet samples at atmospheric pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In cement chemistry notation, single letters are used to represent oxides: C = CaO, S = SiO2, A = Al2O3, F = Fe2O3, H = H2O, and \( \bar S \) = SO3. Calcium silicate hydrate is abbreviated C–S–H because the stoichiometry is variable and numerical subscripts would be misleading.

References

  1. Smolczyk HG (1980) In: Proceedings of the 7th international congress on the chemistry of cement, Paris, 1980, Vol. 1, Editions Septima, Paris, p III-1/3

  2. Mehta PK (1989) In: Malhotra VM (ed) Proceedings of the 3rd international conference on Fly Ash, Silica Fume, and Natural Pozzolans in Concrete, Trondheim, Norway, 1989, American Concrete Institute, Detroit, p 1

  3. Regourd M (1980) In: Proceedings of the 7th International congress on the chemistry of cement, Paris, 1980, Vol. 1 Editions Septima, Paris, p III.2, 9

  4. Regourd M, Thomassin JH, Baillif P, Touray JC (1983) Cem Conr Res 13:549

    Article  CAS  Google Scholar 

  5. Harrison AM, Winter NB, Taylor HFW (1987) In: Struble LJ, Brown PW (eds) Materials research society symposium proceedings, Vol. 85, 1987, Materials Research Society, Pittsburgh, p 213

  6. Wang SD (2000) Adv Cem Res 12:163

    Article  CAS  Google Scholar 

  7. Richardson IG, Groves GW (1992) J Mater Sci 27:6204–6212

    Article  CAS  Google Scholar 

  8. Richardson IG (1999) Cem Concr Res 29:1131

    Article  CAS  Google Scholar 

  9. Richardson IG, Cabrera JG (2000) Cem Conr Comp 22:259

    Article  CAS  Google Scholar 

  10. Gartner EM, Kurtis KE, Monteiro PJM (2000) Cem Concr Res 30:817

    Article  CAS  Google Scholar 

  11. Clark SM, Morrison GR, Shi WD (1999) ibid 29:1099

    CAS  Google Scholar 

  12. Juenger MCG, Lamour VHR, Monteiro PJM, Gartner EM, Denbeaux GP (2003) J Mater Sci Let 22:1335

    Article  CAS  Google Scholar 

  13. Chao W, Harteneck BD, Liddle JA, Anderson EH, Attwood DT (2005) Nature 435:1210

    Article  CAS  Google Scholar 

  14. ASTM C 204 (2003) Standard test method for fineness of hydraulic cement by air-permeability apparatus. American Society for Testing Materials, West Conshohocken, Pennsylvania

  15. Meyer-Ilse W, Medecki H, Jochum L, Anderson E, Attwood D, Magowan C, Balhorn R, Moronne M, Rudolph D, Schmahl G (1995) Synchrotron Radiat News 8:23

    Article  Google Scholar 

  16. Denbeaux G, Anderson E, Chao W, Eimuller T, Johnson L, Kohler M, Larabell C, Legros M, Fischer P, Pearson A, Schuetz G, Yager D, Attwood D (2001) Nucl Instrum Methods Physics Res A 467(2):841

    Article  Google Scholar 

  17. Loo BW, Meyer-Ilse W, Rothman SS (2000) J Microsc – Oxford 197(2):185

    Article  Google Scholar 

  18. Williamson RB (1968) J Cryst Growth 3:787

    Article  Google Scholar 

  19. Juenger MCG, Monteiro PJM, Gartner EM, Denbeaux GP (2003) In: Justnes H (ed) Proceedings of the 11th international congress on the chemistry of cement, Durban, South Africa, 2003, p 249

  20. Juenger MCG, Monteiro PJM, Gartner EM, Denbeaux GP (2005) Cem Concr Res 35:19

    Article  CAS  Google Scholar 

  21. Uchikawa H (1986) Proceedings of the 8th international congress on the chemistry to cement, Rio de Janeiro, Brazil, 1986, (Abla Gráfica e Editora, Rio de Janeiro, 1986) p 249

  22. Mehta PK (1973) Cem Concr Res 3:1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Lafarge Central Research, France, for supporting this work. Research at XM-1 is supported by the United States Department of Energy, Office of Basic Energy Sciences under contract DE-AC 03-76F00098. The authors also gratefully acknowledge the help of G.P. Denbeaux, A.L. Pearson, D.A. Silva, and J.S. Swinnea with the experiments described herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Garci Juenger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juenger, M.C.G., Monteiro, P.J.M. & Gartner, E.M. In situ imaging of ground granulated blast furnace slag hydration. J Mater Sci 41, 7074–7081 (2006). https://doi.org/10.1007/s10853-006-0941-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0941-7

Keywords

Navigation