Journal of Materials Science

, Volume 41, Issue 7, pp 2045–2053 | Cite as

EPR and optical absorption studies of Cr3+ ions in alkaline earth alumino borate glasses

  • V. Ramesh Kumar
  • J. Lakshmana Rao
  • N. O. Gopal


Electron paramagnetic resonance (EPR) and optical absorption spectra of Cr3+ ions in Calcium alumino borate (CaAB) glasses have been studied. The EPR spectra exhibit weak resonance signal at g ≈ 4.50 and intense resonance signal at g ≈ 1.98. A sharp resonance signal at g ≈ 1.97 was also observed at lower concentrations of chromium. The concentration dependence of the linewidth of the resonance signal at g ≈ 1.98 suggests the formation of Cr3+ ion clusters by magnetic superexchange interactions. The temperature dependence of the peak to peak intensity and the linewidth of the resonance signal at g ≈ 1.98 suggests that the exchange interactions between Cr3+ ions in the present sample were antiferromagnetic in nature with Néel temperature, TN = 233 K. From the number of spins participating in the resonance at g ≈ 1.98, the paramagnetic susceptibility (χ) was calculated at different temperatures (233–295 K). A plot of 1/χ and T was found to obey Curie-Weiss law with negative Curie temperature. By measuring the relative intensities of the resonance signal at g ≈ 1.98, at different temperatures, the value of antiferromagnetic coupling constant (J) has been estimated. The optical absorption spectrum of chromium doped CaAB glass exhibits four bands, characteristic of Cr3+ ions, in nearly octahedral symmetry. From the band positions, the crystal field splitting parameter, Dq and the Racah interelectronic repulsion parameters, B and C were evaluated. The optical band gap (Eopt) and the Urbach energy (ΔE) were calculated from the ultraviolet absorption edges.


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Optical Absorption Spectrum Resonance Signal Borate Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. MINAMI, K. IMAZAWA and M. TANAKA, J. Non-Cryst. Solids 42 (1980) 469.CrossRefGoogle Scholar
  2. 2.
    U. SELVERAJ and K. J. RAO, ibid. 72 (1985) 315.Google Scholar
  3. 3.
    N. SATYANARAYANA, G. GOVINDARAJ and A. KARTHIKEYAN, ibid. 136 (1991) 219.CrossRefGoogle Scholar
  4. 4.
    M. JAMNICKY, P. ZNASIK, D. TUNEGA and M. D. INGRAM, ibid. 185 (1995) 151.Google Scholar
  5. 5.
    M. HAOUARI, M. AIROUD, H. BEN OUADA, H. MAAREF, A. BRENIER and C. GARAPON, Phys. Stat. Sol. (b) 215 (1999) 1165.CrossRefGoogle Scholar
  6. 6.
    R. REISFELD and C. K. JORGENSEN, Struct. Bonding 49 (1982) 1.Google Scholar
  7. 7.
    A. VAN DIE, A. C. H. I. LEENAERS, G. BLASSE and W. F. VAN DER WEG, J. Non-Cryst. Solids 99 (1988) 32.CrossRefGoogle Scholar
  8. 8.
    F. DURVILLE, B. CHAMPAGNON, E. DUVAL, G. BOULON, F. GAUME, A. F. WRIGHT and A. N. FITCH, Phys. Chem. Glasses 25 (1984) 126.Google Scholar
  9. 9.
    A. KISILEV, R. REISFELD, A. BUCH and M. ISHSHALAM, Chem. Phys. Lett. 129 (1986) 450.CrossRefGoogle Scholar
  10. 10.
    J. LAKSHMANA RAO, B. SREEDHAR, M. RAMACHANDRA REDDY and S. V. J. LAKSHMAN, J. Non-Cryst. Solids 111 (1989) 228.CrossRefGoogle Scholar
  11. 11.
    V. S. COSTA, F. S. LAMEIRAS, M. V. B. PINHEIRO, D. F. SOUSA, Y. R. SHEN and K. L. BRAY, ibid. 273 (2000) 209.Google Scholar
  12. 12.
    R. C. NICKLIN, H. A. FARACH and C. P. POOLE JR., J. Chem. Phys. 65 (1976) 2998.CrossRefGoogle Scholar
  13. 13.
    J. QUI and K. HIRAO, Solid State Commun. 106 (1996) 795.Google Scholar
  14. 14.
    A. ABRAGAM and B. BLEANY, in “Electron Paramagnetic Resonance of Transition Ions” (Dover, New York, 1970).Google Scholar
  15. 15.
    M. HAOUARI, H. BEN OUADA, H. MAAREF, H. HOMMEL and A. P. LEGRAND, Phosphorus Res. Bull. 6 (1997) 241.Google Scholar
  16. 16.
    I. ARDELEAN, GH. ILONCA, M. PETEANU, E. BARBOS and E. INDREA, J. Mater. Sci. 17 (1982) 1988.CrossRefGoogle Scholar
  17. 17.
    O. COZAR, I. ARDELEAN, I. BRATU, GH. ILONCA and S. SIMON, Solid State Commun. 86 (1993) 569.CrossRefGoogle Scholar
  18. 18.
    M. CASALBONI, V. CIAFARDONE, G. GIULI, B. IZZI, E. PARIS and P. PROSPOSITO, J. Phys.: Condens. Matter. 8 (1996) 9059.CrossRefGoogle Scholar
  19. 19.
    J. A. WEIL, J. R. BOLTON and J. E. WERTZ, in “Electron Paramagnetic Resonance: Elementary Theory and Practical Applications” (Wiley, New York, 1994) p. 498.Google Scholar
  20. 20.
    S. V. J. LAKSHMAN, T. V. KRISHNA RAO and K. PURANDHAR, Solid State Commun. 47 (1983) 993.CrossRefGoogle Scholar
  21. 21.
    C. KOEPKE, K. WINSNIEWSKI, M. GRINBERG, D. L. RUSSEL and K. HOLLIDAY, J. Lumin. 81 (1999) 301.Google Scholar
  22. 22.
    H. L. SCHLAFER, H. GAUSMANN and H. ZANDER, Inorg. Chem. 6 (1967) 1528.Google Scholar
  23. 23.
    M. A. HASSAN and C. A. HOGARTH, J. Mater. Sci. 23 (1998) 2500.Google Scholar
  24. 24.
    E. A. DAVIS and N. F. MOTT, Phil. Mag. 22 (1970) 903.Google Scholar
  25. 25.
    E. GUEDES DE SOUSA, S. K. MENDIRATTA and J. M. MACHADO DA SILVA, Port. Phys. 17 (1986) 203.Google Scholar
  26. 26.
    J. A. DUFFY and M. D. INGRAM, J. Inorg. Nucl. Chem. 37 (1975) 1203.CrossRefGoogle Scholar
  27. 27.
    R. J. LANDRY, J. T. FOURNIER and C. G. YOUNG, J. Chem. Phys. 46 (1967) 1285.CrossRefGoogle Scholar
  28. 28.
    G. FUXI, in “Optical and Spectroscopic Properties of Glass” (Springer-Verlag, Berlin, 1992) p. 136.Google Scholar
  29. 29.
    J. M. DANCE, J. J. VIDEAU and J. PORTIER, J. Non-Cryst. Solids 86 (1986) 88.CrossRefGoogle Scholar
  30. 30.
    N. S. GARF' YANOV, Sov. Phys. Sol. Stat. 4 (1963) 1795.Google Scholar
  31. 31.
    J. WONG and C. A. ANGELL, Appl. Spectr. Revs. 4(2) (1971) 155.Google Scholar
  32. 32.
    R. BRUCKNER, N. SAMMET and H. STOCKHORST, J. Non-Cryst. Solids 40 (1980) 273.Google Scholar
  33. 33.
    J. T. FOURNIER, R. J. LANDRY, R. H. BARTRAM, J. Chem. Phys. 55 (1971) 2522.CrossRefGoogle Scholar
  34. 34.
    J. SAMUEL SMART, in “Effective Field Theories of Magnetism” (W. B. Saunder Co., London, 1966) p. 16.Google Scholar
  35. 35.
    L. F. MULLENAUER and A. SCHAWLOW, Phys. Review 168(2) (1968) 309.Google Scholar
  36. 36.
    S. PAYNE, L. CHASE and G. WILKE, J. Lumin. 44 (1989) 167.Google Scholar
  37. 37.
    B. HENDERSON, M. YAMAGA, Y. GAO and K. P. O'DONNELL, Phys. Rev. B 46 (1992) 652.Google Scholar
  38. 38.
    R. BALDA, J. FERNANDEZ, M. ILLARRAMENDI, M. ARRIANDIAGA, J. ADAM and J. LUCAS, ibid. 44 (1991) 4759.CrossRefGoogle Scholar
  39. 39.
    R. L. CARLIN, in “Transition Metal Chemistry” (Marcel Dekker, New York, 1968) p. 5.Google Scholar
  40. 40.
    J. R. PERUMAREDDI, Coordin. Chem. Rev. 4 (1969) 73.Google Scholar
  41. 41.
    Y. TANABE and S. SUGANO, J. Phys. Soc. Japan 9 (1954) 753.Google Scholar
  42. 42.
    A. I. SABRI and M. M. EL-SAMANOUDY, J. Mater. Sci. 30 (1995) 3930.Google Scholar
  43. 43.
    C. A. HOGARTH and AA. NAVIKOV, J. Phys. D.: Appl. Phys. 16 (1983) 675.Google Scholar
  44. 44.
    A. A. KUTUB, A. E. MOHAMMAD OSMAN and C. A. HOGARTH, J. Mater. Sci. 21 (1986) 3517.Google Scholar
  45. 45.
    J. M. ARZEIAN and C. A. HOGARTH, ibid. 26 (1991) 9353.CrossRefGoogle Scholar
  46. 46.
    M. ASHARF CHAUDHRY, M. SHAKEEL BILAL, M. ALTAF, M. ASHFAQ AHMED and A. M. RAMA, ibid. 14 (1995) 975.Google Scholar
  47. 47.
    H. SHOLZE, in “Glass: Nature, Structure and Properties” (Springer, New York, 1991).Google Scholar
  48. 48.
    G. FUXI, in “Optical and Spectroscopic Properties of Glass” (Springer-Verlag, Berlin, 1992) p. 66.Google Scholar
  49. 49.
    R. REISFELD, Struct. Bonding 22 (1975) 123.Google Scholar
  50. 50.
    M. VITHAL, P. NACHIMUTHU, T. BANU and R. JAGANNATHAN, J. Appl. Phys. 81 (1997) 7922.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • V. Ramesh Kumar
    • 1
  • J. Lakshmana Rao
    • 1
  • N. O. Gopal
    • 1
  1. 1.Department of PhysicsSri Venkateswara UniversityTirupatiIndia

Personalised recommendations