Skip to main content
Log in

EPR and optical absorption studies of Cr3+ ions in alkaline earth alumino borate glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electron paramagnetic resonance (EPR) and optical absorption spectra of Cr3+ ions in Calcium alumino borate (CaAB) glasses have been studied. The EPR spectra exhibit weak resonance signal at g ≈ 4.50 and intense resonance signal at g ≈ 1.98. A sharp resonance signal at g ≈ 1.97 was also observed at lower concentrations of chromium. The concentration dependence of the linewidth of the resonance signal at g ≈ 1.98 suggests the formation of Cr3+ ion clusters by magnetic superexchange interactions. The temperature dependence of the peak to peak intensity and the linewidth of the resonance signal at g ≈ 1.98 suggests that the exchange interactions between Cr3+ ions in the present sample were antiferromagnetic in nature with Néel temperature, TN = 233 K. From the number of spins participating in the resonance at g ≈ 1.98, the paramagnetic susceptibility (χ) was calculated at different temperatures (233–295 K). A plot of 1/χ and T was found to obey Curie-Weiss law with negative Curie temperature. By measuring the relative intensities of the resonance signal at g ≈ 1.98, at different temperatures, the value of antiferromagnetic coupling constant (J) has been estimated. The optical absorption spectrum of chromium doped CaAB glass exhibits four bands, characteristic of Cr3+ ions, in nearly octahedral symmetry. From the band positions, the crystal field splitting parameter, Dq and the Racah interelectronic repulsion parameters, B and C were evaluated. The optical band gap (Eopt) and the Urbach energy (ΔE) were calculated from the ultraviolet absorption edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. MINAMI, K. IMAZAWA and M. TANAKA, J. Non-Cryst. Solids 42 (1980) 469.

    Article  CAS  Google Scholar 

  2. U. SELVERAJ and K. J. RAO, ibid. 72 (1985) 315.

    Google Scholar 

  3. N. SATYANARAYANA, G. GOVINDARAJ and A. KARTHIKEYAN, ibid. 136 (1991) 219.

    Article  CAS  Google Scholar 

  4. M. JAMNICKY, P. ZNASIK, D. TUNEGA and M. D. INGRAM, ibid. 185 (1995) 151.

    CAS  Google Scholar 

  5. M. HAOUARI, M. AIROUD, H. BEN OUADA, H. MAAREF, A. BRENIER and C. GARAPON, Phys. Stat. Sol. (b) 215 (1999) 1165.

    Article  CAS  Google Scholar 

  6. R. REISFELD and C. K. JORGENSEN, Struct. Bonding 49 (1982) 1.

    Google Scholar 

  7. A. VAN DIE, A. C. H. I. LEENAERS, G. BLASSE and W. F. VAN DER WEG, J. Non-Cryst. Solids 99 (1988) 32.

    Article  CAS  Google Scholar 

  8. F. DURVILLE, B. CHAMPAGNON, E. DUVAL, G. BOULON, F. GAUME, A. F. WRIGHT and A. N. FITCH, Phys. Chem. Glasses 25 (1984) 126.

    CAS  Google Scholar 

  9. A. KISILEV, R. REISFELD, A. BUCH and M. ISHSHALAM, Chem. Phys. Lett. 129 (1986) 450.

    Article  CAS  Google Scholar 

  10. J. LAKSHMANA RAO, B. SREEDHAR, M. RAMACHANDRA REDDY and S. V. J. LAKSHMAN, J. Non-Cryst. Solids 111 (1989) 228.

    Article  Google Scholar 

  11. V. S. COSTA, F. S. LAMEIRAS, M. V. B. PINHEIRO, D. F. SOUSA, Y. R. SHEN and K. L. BRAY, ibid. 273 (2000) 209.

    CAS  Google Scholar 

  12. R. C. NICKLIN, H. A. FARACH and C. P. POOLE JR., J. Chem. Phys. 65 (1976) 2998.

    Article  CAS  Google Scholar 

  13. J. QUI and K. HIRAO, Solid State Commun. 106 (1996) 795.

    Google Scholar 

  14. A. ABRAGAM and B. BLEANY, in “Electron Paramagnetic Resonance of Transition Ions” (Dover, New York, 1970).

    Google Scholar 

  15. M. HAOUARI, H. BEN OUADA, H. MAAREF, H. HOMMEL and A. P. LEGRAND, Phosphorus Res. Bull. 6 (1997) 241.

    Google Scholar 

  16. I. ARDELEAN, GH. ILONCA, M. PETEANU, E. BARBOS and E. INDREA, J. Mater. Sci. 17 (1982) 1988.

    Article  CAS  Google Scholar 

  17. O. COZAR, I. ARDELEAN, I. BRATU, GH. ILONCA and S. SIMON, Solid State Commun. 86 (1993) 569.

    Article  CAS  Google Scholar 

  18. M. CASALBONI, V. CIAFARDONE, G. GIULI, B. IZZI, E. PARIS and P. PROSPOSITO, J. Phys.: Condens. Matter. 8 (1996) 9059.

    Article  CAS  Google Scholar 

  19. J. A. WEIL, J. R. BOLTON and J. E. WERTZ, in “Electron Paramagnetic Resonance: Elementary Theory and Practical Applications” (Wiley, New York, 1994) p. 498.

    Google Scholar 

  20. S. V. J. LAKSHMAN, T. V. KRISHNA RAO and K. PURANDHAR, Solid State Commun. 47 (1983) 993.

    Article  CAS  Google Scholar 

  21. C. KOEPKE, K. WINSNIEWSKI, M. GRINBERG, D. L. RUSSEL and K. HOLLIDAY, J. Lumin. 81 (1999) 301.

    CAS  Google Scholar 

  22. H. L. SCHLAFER, H. GAUSMANN and H. ZANDER, Inorg. Chem. 6 (1967) 1528.

    Google Scholar 

  23. M. A. HASSAN and C. A. HOGARTH, J. Mater. Sci. 23 (1998) 2500.

    Google Scholar 

  24. E. A. DAVIS and N. F. MOTT, Phil. Mag. 22 (1970) 903.

    CAS  Google Scholar 

  25. E. GUEDES DE SOUSA, S. K. MENDIRATTA and J. M. MACHADO DA SILVA, Port. Phys. 17 (1986) 203.

    CAS  Google Scholar 

  26. J. A. DUFFY and M. D. INGRAM, J. Inorg. Nucl. Chem. 37 (1975) 1203.

    Article  CAS  Google Scholar 

  27. R. J. LANDRY, J. T. FOURNIER and C. G. YOUNG, J. Chem. Phys. 46 (1967) 1285.

    Article  CAS  Google Scholar 

  28. G. FUXI, in “Optical and Spectroscopic Properties of Glass” (Springer-Verlag, Berlin, 1992) p. 136.

    Google Scholar 

  29. J. M. DANCE, J. J. VIDEAU and J. PORTIER, J. Non-Cryst. Solids 86 (1986) 88.

    Article  CAS  Google Scholar 

  30. N. S. GARF' YANOV, Sov. Phys. Sol. Stat. 4 (1963) 1795.

    Google Scholar 

  31. J. WONG and C. A. ANGELL, Appl. Spectr. Revs. 4(2) (1971) 155.

    CAS  Google Scholar 

  32. R. BRUCKNER, N. SAMMET and H. STOCKHORST, J. Non-Cryst. Solids 40 (1980) 273.

    Google Scholar 

  33. J. T. FOURNIER, R. J. LANDRY, R. H. BARTRAM, J. Chem. Phys. 55 (1971) 2522.

    Article  CAS  Google Scholar 

  34. J. SAMUEL SMART, in “Effective Field Theories of Magnetism” (W. B. Saunder Co., London, 1966) p. 16.

    Google Scholar 

  35. L. F. MULLENAUER and A. SCHAWLOW, Phys. Review 168(2) (1968) 309.

    Google Scholar 

  36. S. PAYNE, L. CHASE and G. WILKE, J. Lumin. 44 (1989) 167.

    CAS  Google Scholar 

  37. B. HENDERSON, M. YAMAGA, Y. GAO and K. P. O'DONNELL, Phys. Rev. B 46 (1992) 652.

    CAS  Google Scholar 

  38. R. BALDA, J. FERNANDEZ, M. ILLARRAMENDI, M. ARRIANDIAGA, J. ADAM and J. LUCAS, ibid. 44 (1991) 4759.

    Article  CAS  Google Scholar 

  39. R. L. CARLIN, in “Transition Metal Chemistry” (Marcel Dekker, New York, 1968) p. 5.

    Google Scholar 

  40. J. R. PERUMAREDDI, Coordin. Chem. Rev. 4 (1969) 73.

    CAS  Google Scholar 

  41. Y. TANABE and S. SUGANO, J. Phys. Soc. Japan 9 (1954) 753.

    CAS  Google Scholar 

  42. A. I. SABRI and M. M. EL-SAMANOUDY, J. Mater. Sci. 30 (1995) 3930.

    Google Scholar 

  43. C. A. HOGARTH and AA. NAVIKOV, J. Phys. D.: Appl. Phys. 16 (1983) 675.

    CAS  Google Scholar 

  44. A. A. KUTUB, A. E. MOHAMMAD OSMAN and C. A. HOGARTH, J. Mater. Sci. 21 (1986) 3517.

    CAS  Google Scholar 

  45. J. M. ARZEIAN and C. A. HOGARTH, ibid. 26 (1991) 9353.

    Article  Google Scholar 

  46. M. ASHARF CHAUDHRY, M. SHAKEEL BILAL, M. ALTAF, M. ASHFAQ AHMED and A. M. RAMA, ibid. 14 (1995) 975.

    Google Scholar 

  47. H. SHOLZE, in “Glass: Nature, Structure and Properties” (Springer, New York, 1991).

    Google Scholar 

  48. G. FUXI, in “Optical and Spectroscopic Properties of Glass” (Springer-Verlag, Berlin, 1992) p. 66.

    Google Scholar 

  49. R. REISFELD, Struct. Bonding 22 (1975) 123.

    CAS  Google Scholar 

  50. M. VITHAL, P. NACHIMUTHU, T. BANU and R. JAGANNATHAN, J. Appl. Phys. 81 (1997) 7922.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lakshmana Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, V.R., Rao, J.L. & Gopal, N.O. EPR and optical absorption studies of Cr3+ ions in alkaline earth alumino borate glasses. J Mater Sci 41, 2045–2053 (2006). https://doi.org/10.1007/s10853-006-0889-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0889-7

Keywords

Navigation