Journal of Materials Science

, Volume 42, Issue 13, pp 4721–4730 | Cite as

Electrochemical study of corrosion inhibition of steel reinforcement in alkaline solutions containing phosphates based components

  • Naceur Etteyeb
  • Leila Dhouibi
  • Mercedes Sanchez
  • Cruz Alonso
  • Carmen Andrade
  • Ezzeddine Triki


The aim of this study is to investigate the viability of use of sodium phosphate (Na3PO4: SP), tetrasodium pyrophosphate (Na4P2O7: TSPP) and hydroxyethylidene-diphosphonic acid (C2H8O7P2: HEDP) as a non-toxic corrosion inhibitors of steel bars in alkaline media which simulate the electrolyte in the concrete pores. The effectiveness of these phosphate compounds as corrosion inhibitors was investigated by measuring the corrosion potentials, the polarization curves, the corrosion current densities, and the electrochemical impedance spectroscopy of steel bars immersed for 30 days in saturated Ca(OH)2 solutions with and without chlorides. At the completion of the tests, the mass losses were determined in order to verify the reliability of the electrochemical results. The results showed that phosphate compounds form a protective layer on the steel surface when immersed in alkaline solution without chlorides. In the presence of chloride ions, the SP acts as an anodic inhibitor and reduces the corrosion activity on steel. The HEDP shows lower efficiency, probably due to the decrease of the pH and to the high [Cl]/[inh] ratio used. Results obtained by electrochemical and gravimetric methods are in quite reasonable agreement.


Corrosion Rate Sodium Phosphate Polarization Resistance Corrosion Current Density Double Layer Capacitance 



The authors acknowledge the financial support received from the project of collaboration Tuniso-Espagnole (22-P/02-03).


  1. 1.
    Dhouibi L, Triki E, Raharinaivo A (2002) Cem Concr Compos 24:35Google Scholar
  2. 2.
    Elsener B, Büchler M, Stalder F, Böhni H (2000) Corrosion 56:727CrossRefGoogle Scholar
  3. 3.
    Berke NS, Hicks MC (1993) In: 12th International corrosion congress, paper n° 445. NACE, Houston, TX, USAGoogle Scholar
  4. 4.
    Berke NS (1989) Mater Perform 28:41Google Scholar
  5. 5.
    Elsener B, Büchler M, Böhni H (1997) Corrosion EUROCORR 97. The European Corrosion Congress, Trondheim, NorwayGoogle Scholar
  6. 6.
    Monticelli C, Frignani A, Trabanelli G (2000) Cem Concr Res 30:635CrossRefGoogle Scholar
  7. 7.
    Jamil HE, Montemor MF, Boulif R, Shriri A, Ferreira MGS (2003) Electrochim Acta 48:3509CrossRefGoogle Scholar
  8. 8.
    Monticelli C, Frignani A, Brunoro G, Trabanelli G, Zucchi F, Tassinari M (1993) Corros Sci 35:1483CrossRefGoogle Scholar
  9. 9.
    Saricimen H, Mohammad M, Quddus A, Shameem M, Barry MS (2000) Cem Concr Compos 24:89CrossRefGoogle Scholar
  10. 10.
    Rincon OT, Pérez O, Paredes E, Caldera Y, Urdaneta C, Sandoval I (2000) Cem Concr Compos 24:79CrossRefGoogle Scholar
  11. 11.
    Batis G, Pantazopoulou P, Routoulas A (2003) Cem Concr Compos 25:371CrossRefGoogle Scholar
  12. 12.
    Gouda VK, Halaka WY (1970) Br Corros J 5:204Google Scholar
  13. 13.
    Mammoliti L, Hansson CM, Hope BB (2003) Cem Concr Res 29:2513Google Scholar
  14. 14.
    Dhouibi L, Triki E, Raharinaivo A, Trabanelli G, Zucchi F (2000) Br Corros J 35:145CrossRefGoogle Scholar
  15. 15.
    Andrade C, Alonso C, Acha M, Malric B (1992) Cem Concr Res 22:869CrossRefGoogle Scholar
  16. 16.
    Alonso C, Andrade C, Argiz C, Malric B (1996) Cem Concr Res 26:405CrossRefGoogle Scholar
  17. 17.
    Ngala VT, Page CL, Page MM (2003) Corros Sci 45:1523CrossRefGoogle Scholar
  18. 18.
    Nakayama N (2000) Corros Sci 42:1897CrossRefGoogle Scholar
  19. 19.
    Garcia C, Gourbin G, Ropital F, Fiaud C (2001) Electrochim Acta 46:973CrossRefGoogle Scholar
  20. 20.
    Starostina M, Smorodin A, Gal-Or L (1999) Mater Perform 38:52Google Scholar
  21. 21.
    Cushner MC, Melhior WC, Przybylinski JL (1990) Mater Perform 29:49Google Scholar
  22. 22.
    Sekine I, Hirakawa Y (1986) Corrosion 42:272Google Scholar
  23. 23.
    Alonso C, Acha M, Andrade C (1990) Admixtures for concrete improvement of properties. Ed. Chapman and Hall. Edit. Vazquez, p 219Google Scholar
  24. 24.
    Stern MS, Geary AL (1957) J Electrochem Soc 104:56CrossRefGoogle Scholar
  25. 25.
    Alonso C, Andrade C, Gonzalez JA (1988) Cem Concr Res 8:687CrossRefGoogle Scholar
  26. 26.
    Morris W, Vico A, Vazquez M, de Sanchez SR (2002) Corros Sci 44:81CrossRefGoogle Scholar
  27. 27.
    Epelboin I, Keddam M, Takenouti H (1972) J Appl Electrochem 2:71CrossRefGoogle Scholar
  28. 28.
    Caprani A, Epelboin I, Morel P, Takenouti H (1995) In: Proceedings of the 4th European symposium on corrosion inhibitors. FerraraGoogle Scholar
  29. 29.
    Hinatsu JT, Graydon WF, Foulkes FR (1988) J Appl Electrochem 19:868CrossRefGoogle Scholar
  30. 30.
    Andrade C, Keddam M, Novoa XR, Perez MC, Rangel CM, Takenouti H (2001) Electrochim Acta 46:3905CrossRefGoogle Scholar
  31. 31.
    Andrade C, Castelo V, Alonso C, Gonzalez JA (1986) In: Chaker V (ed) ASTMSTP 906. American Society for Testing and Materials, Philadelphia, p 43Google Scholar
  32. 32.
    Garcés P, Andrade MC, Saez A, Alonso MC (2005) Corros Sci 47:289CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Naceur Etteyeb
    • 1
  • Leila Dhouibi
    • 1
  • Mercedes Sanchez
    • 2
  • Cruz Alonso
    • 2
  • Carmen Andrade
    • 2
  • Ezzeddine Triki
    • 1
  1. 1.Unité de Recherche: Corrosion et Protection des MétalliquesENITTunis-Belvedere Tunisia
  2. 2.Institute of Construction Science Eduardo Torroja (CSIC)Madrid Spain

Personalised recommendations