Advertisement

Journal of Materials Science

, Volume 41, Issue 23, pp 7902–7925 | Cite as

Elastic properties of powders during compaction. Part 3: Evaluation of models

  • M. L. Hentschel
  • N. W. Page
Article

Abstract

General approaches for developing models to describe the elastic properties of granular and porous materials are discussed, with emphasis on their application to predicting the elastic properties of powders undergoing uniaxial compaction. Both particle-based, and pore-based models were considered so as to reflect the transition in compact response with decreasing porosity; being particle-dominated at high porosity, then pore-dominated at low porosity. Pore-based models were further subdivided into: mechanistic models, which consider the effects of porosity on internal mechanical fields; and geometric models, for which the elastic response is assumed to correlate with a microstructural feature (e.g. load-bearing area). A selection of models suggested in the literature, considered representative of these approaches, was applied to experimental measurements of the elastic moduli of powders during compaction. In general, the geometric pore-based models show most promise, as these are able to approximate the transition in pore character during compaction. However, further developments are required for application to uniaxially compacted powders. In particular, it is necessary to develop the ability to predict more than one elastic modulus, handle irregular powder particles, and accommodate powders comprised of brittle solid phase materials.

Keywords

Elastic Modulo Composite Sphere Sample Microstructure Critical Porosity Regular Packing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors gratefully acknowledge scholarship support for MLH through the Australian Research Council Small Grants Scheme.

References

  1. 1.
    Hentschel ML, Page NW Elastic properties of powders during compaction. Part 1: Pseudo-isotropic moduli. J Mater Sci (accepted)Google Scholar
  2. 2.
    Hentschel ML, Page NW Elastic properties of powders during compaction. Part 2: Elastic anisotropy. J Mater Sci (accepted)Google Scholar
  3. 3.
    Dean EA, Lopez JA (1983) J Am Ceram Soc 66:366CrossRefGoogle Scholar
  4. 4.
    Wang JC (1984) J Mater Sci 19:801CrossRefGoogle Scholar
  5. 5.
    Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, SingaporeGoogle Scholar
  6. 6.
    Duffy J, Mindlin RD (1957) J Appl Mech 24:585Google Scholar
  7. 7.
    Deresiewicz H (1958) Adv Appl Mech 5:233CrossRefGoogle Scholar
  8. 8.
    Kendall K, Alford NMCN, Birchall JD (1987) Proc R Soc Lond A 412:269Google Scholar
  9. 9.
    Iida K (1939) Bull Earthq Res Inst 17:783Google Scholar
  10. 10.
    Takahashi T, Satô Y (1949) Bull Earthq Res Inst Japan 27:11Google Scholar
  11. 11.
    Duffy J (1959) Trans ASME J Appl Mech 26:88Google Scholar
  12. 12.
    Rice RW (1998) Porosity of ceramics. Marcel Dekker, New YorkGoogle Scholar
  13. 13.
    Dantu P (1957) Proceedings of the 4th International Conference on Soil Mechanics and Foundations Engineering, vol 1. p 144Google Scholar
  14. 14.
    Liu C-H, Nagel SR, Schecter DA, Coppersmith SN, Majumdar S, Narayan O, Witten TA (1995) Science 269:513CrossRefGoogle Scholar
  15. 15.
    Brandt H (1955) J Appl Mech 22:479Google Scholar
  16. 16.
    Digby PJ (1981) J Appl Mech Trans ASME 48:803CrossRefGoogle Scholar
  17. 17.
    Walton K (1987) J Mech Phys Solids 35:213CrossRefGoogle Scholar
  18. 18.
    Emeriault F, Chang CS (1997) J Eng Mech 123:1289CrossRefGoogle Scholar
  19. 19.
    Endres AL (1990) J Appl Mech Trans ASME 57:330CrossRefGoogle Scholar
  20. 20.
    Chang CS, Chao SJ, Chang Y (1995) Int J Solids Struct 32:1989CrossRefGoogle Scholar
  21. 21.
    Chang CS, Liao CL (1994) Appl Mech Rev 47:S197Google Scholar
  22. 22.
    Dong J-J, Pan Y-W (1999) Int J Num Anal Meth Geomech 23:1075CrossRefGoogle Scholar
  23. 23.
    Bathurst RJ, Rothenburg L (1988) J Appl Mech Trans ASME 55:17CrossRefGoogle Scholar
  24. 24.
    Misra A, Chang CS (1993) Int J Solids Struct 30:2547CrossRefGoogle Scholar
  25. 25.
    Kruyt NP, Rothenburg L (2001) Int J Solids Struct 38:4879CrossRefGoogle Scholar
  26. 26.
    Kruyt NP, Rothenburg L (1998) Int J Eng Sci 36:1127CrossRefGoogle Scholar
  27. 27.
    Mackenzie JK (1950) Proc Phys Soc Lond 63B:2Google Scholar
  28. 28.
    Hashin Z (1962) J Appl Mech Trans ASME 29:143Google Scholar
  29. 29.
    Zimmerman RW (1991) Mech Mater 12:17CrossRefGoogle Scholar
  30. 30.
    Sayers CM, Smith RL (1982) Ultrasonics 20:201CrossRefGoogle Scholar
  31. 31.
    Rossi RC (1968) J Am Ceram Soc 51:433CrossRefGoogle Scholar
  32. 32.
    Kreher W, Ranachowski J, Rejmund F (1977) Ultrasonics 14:70CrossRefGoogle Scholar
  33. 33.
    Mazilu P, Ondracek G (1990) In: Herrmann KP Olesiak ZS (eds) Thermal effects in fracture of multiphase materials. Proceedings of the Euromech Colloquium 255, Oct. 31–Nov. 2, 1989. Panderburn, FRG, pp 214–226. Springer-Verlag. Berlin. (1990)Google Scholar
  34. 34.
    Dean EA (1983) J Am Ceram Soc 66:847CrossRefGoogle Scholar
  35. 35.
    Zhao YH, Tandon GP, Weng GJ (1989) Acta Mech 76:105CrossRefGoogle Scholar
  36. 36.
    Kachanov M, Tsukrov I, Shafiro B (1994) Appl Mech Rev 47:151CrossRefGoogle Scholar
  37. 37.
    Eshelby JD (1957) Proc R Soc Lond A 241:367Google Scholar
  38. 38.
    Bert CW (1985) J Mater Sci 20:2220CrossRefGoogle Scholar
  39. 39.
    Nielsen LF (1984) J Am Ceram Soc 67:93CrossRefGoogle Scholar
  40. 40.
    Nielsen LF (1982) Mater Sci Eng 52:39CrossRefGoogle Scholar
  41. 41.
    Hill R (1963) J Mech Phys Solids 11:357CrossRefGoogle Scholar
  42. 42.
    Hashin Z, Shtrikman S (1963) J Mech Phys Solids 11:127CrossRefGoogle Scholar
  43. 43.
    Balendran B, Nemat-Nasser S (1995) J Mech Phys Solids 43:1825CrossRefGoogle Scholar
  44. 44.
    Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. Elsevier, AmsterdamGoogle Scholar
  45. 45.
    Ramakrishnan N, Arunachalam VS (1993) J Am Ceram Soc 76:2745CrossRefGoogle Scholar
  46. 46.
    Martin LP, Dadon D, Rosen M (1996) J Am Ceram Soc 79:1281CrossRefGoogle Scholar
  47. 47.
    Rice RW (1996) In: Liu D-M (ed) Porous ceramic materials: fabrication, characterisation, applications. Trans Tech Publications, Zurich, p 1Google Scholar
  48. 48.
    Rice RW (1996) J Mater Sci 31:102CrossRefGoogle Scholar
  49. 49.
    Roberts AP, Garboczi EJ (2000) J Am Ceram Soc 83:3041CrossRefGoogle Scholar
  50. 50.
    Budiansky B (1965) J Mech Phys Solids 13:223CrossRefGoogle Scholar
  51. 51.
    Wu TT (1966) Int J Solids Struct 2:1CrossRefGoogle Scholar
  52. 52.
    Mori T, Tanaka K (1973) Acta Metall 21:571CrossRefGoogle Scholar
  53. 53.
    Dvorak GJ, Srinivas MV (1999) J Mech Phys Solids 47:899, 2207Google Scholar
  54. 54.
    Dunn ML, Ledbetter H (1995) J Mater Res 10:2715Google Scholar
  55. 55.
    Luo J, Stevens R (1996) J Appl Phys 79:9047CrossRefGoogle Scholar
  56. 56.
    Ferrari M, Filipponi M (1991) J Am Ceram Soc 74:229CrossRefGoogle Scholar
  57. 57.
    Ponte Castañeda P, Willis JR (1995) J Mech Phys Solids 43:1919CrossRefGoogle Scholar
  58. 58.
    Rice RW (1996) J Mater Sci 31:1509CrossRefGoogle Scholar
  59. 59.
    Cytermann R (1987) Powder Metall Int 19:27Google Scholar
  60. 60.
    Phani KK, Niyogi SK (1987) J Am Ceram Soc 70:362Google Scholar
  61. 61.
    Boccaccini AR, Ondracek G, Mazilu P, Windelberg D (1993) J Mech Behav Mater 4:119Google Scholar
  62. 62.
    Arnold M, Boccaccini AR, Ondracek G (1996) J Mater Sci 31:1643CrossRefGoogle Scholar
  63. 63.
    Abdel-Ghani M, Petrie JG, Seville JPK, Clift R, Adams MJ (1991) Powder Technol 65:113CrossRefGoogle Scholar
  64. 64.
    Skriver HL, Rosengaard NM (1992) Phys Rev B 46:7157CrossRefGoogle Scholar
  65. 65.
    Hentschel ML (2002) PhD thesis. The University of NewcastleGoogle Scholar
  66. 66.
    German RM (1996) Sintering theory and practice. Wiley, New YorkGoogle Scholar
  67. 67.
    Rice RW (2005) J Mater Sci 40:983CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Mechanical EngineeringThe University of NewcastleNewcastleAustralia
  2. 2.GracevilleAustralia

Personalised recommendations