Journal of Materials Science

, Volume 41, Issue 22, pp 7636–7642 | Cite as

Grain size dependence of tensile behavior in nanocrystalline Ni–Fe alloys

  • Hongqi Li
  • Fereshteh Ebrahimi
  • Hahn Choo
  • Peter K. Liaw


The tensile behaviors of FCC Ni–Fe alloys were investigated within three grain size regimes: >100 nm, 15–100 nm, and <15 nm. The results show that the nanocrystalline metals demonstrated large strain hardening rates, which increase with decreasing the grain size. With the similar grain size, lowing the stacking-fault energy (SFE) by addition of alloying element increases the yield strength and strain hardening ability. The “low” tensile elongation of nanocrystalline metals is due to the basic tradeoff between the strength and tensile elongation, i.e. nanostructured metals are not inherently brittle. Both the tensile results and fracture surface observations suggest that the tensile ductility increases with increasing the grain size. Furthermore, within the large grain size regime, the fracture surface exhibited the real void structure; while the fracture surface showed the concave and convex features when the grain size is less than the critical value.


Fracture Surface Grain Size Distribution Tensile Elongation Size Regime Void Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Science Foundation (NSF) under the grant # DMR-9980213 at Materials Science and Engineering Department of the University of Florida and DMR-0231320 at Materials Science and Engineering Department of the University of Tennessee.


  1. 1.
    Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Acta Mater 51:387CrossRefGoogle Scholar
  2. 2.
    Embury JD, Hirth JP (1994) Acta Metall Mater 42:2051CrossRefGoogle Scholar
  3. 3.
    Dieter GE (1986) Mechanical metallurgy. McGraw-Hill, New York, p 168Google Scholar
  4. 4.
    Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2004) Nat Mater 3:43CrossRefGoogle Scholar
  5. 5.
    Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Nature 391:561CrossRefGoogle Scholar
  6. 6.
    Van Swygenhoven H (2002) Science 296:66CrossRefGoogle Scholar
  7. 7.
    Schiøtz J, Jacobsen KW (2003) Science 301:1357CrossRefGoogle Scholar
  8. 8.
    Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2003) Phil Mag Lett 83:385Google Scholar
  9. 9.
    Liao XZ, Zhao YH, Zhu YT, Valiev RZ, Gunderov DV (2004) J Appl Phys 96:636CrossRefGoogle Scholar
  10. 10.
    Nieh TG, Wadsworth J (1991) Scripta Met Mater 25:955CrossRefGoogle Scholar
  11. 11.
    Cheung C, Palumbo G, Erb U (1994) Scripta Met Mater 31:735CrossRefGoogle Scholar
  12. 12.
    Li H, Ebrahimi F (2003) Mater Sci Eng A 347:93CrossRefGoogle Scholar
  13. 13.
    Wang N, Wang Z, Aust KT, Erb U (1997) Mater Sci Eng A 237:150CrossRefGoogle Scholar
  14. 14.
    Ebrahimi F, Bourne GR, Kelly MS, Matthews TE (1999) NanoStruct Mater 11:343CrossRefGoogle Scholar
  15. 15.
    Legros M, Elliott BR, Rittner MN, Weertman JR, Hemker KJ (2000) Philos Mag A 80:1017CrossRefGoogle Scholar
  16. 16.
    Matlock DK, Zia-Ebrahimi F, Krauss G (1984) In: Krauss G (ed) Deformation, processing and structure. ASM Publication, Metals Park, Ohio, p. 47Google Scholar
  17. 17.
    Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5Google Scholar
  18. 18.
    McCrea JL, Palumbo G, Hibbard GD, Erb U (2003) Rev Adv Mater Sci 5:252Google Scholar
  19. 19.
    Zhang K, Weertman JR, Eastman JA (2005) Appl Phys Lett 87:061921CrossRefGoogle Scholar
  20. 20.
    Yip S (2004) Nature Mater 3:11CrossRefGoogle Scholar
  21. 21.
    Budrovic Z, Van Swygenhoven H, Derlet PM, Van Petegem S, Schmitt B (2004) Science 304:273CrossRefGoogle Scholar
  22. 22.
    Ebrahimi F, Ahmed Z, Morgan KL (2001) MRS Symp Proc 634:B2.7.1Google Scholar
  23. 23.
    Mitra R, Ungar T, Morita T, Sanders PG, Weertman JR (1999) In: Chung Y-W, Dund DC, Liaw PK, Olsen GB (eds) The 1999 J.R. Weertman Symposium. TMS, Warrendale, PA, p 553Google Scholar
  24. 24.
    Hasnaoui A, Van Swygenhoven H, Derlet PM (2003) Science 300:1550CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Hongqi Li
    • 1
  • Fereshteh Ebrahimi
    • 2
  • Hahn Choo
    • 1
  • Peter K. Liaw
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations