Advertisement

Journal of Materials Science

, Volume 41, Issue 22, pp 7571–7579 | Cite as

Fluorescence spectroscopy analysis of Al–Al2O3 composites with coarse interpenetrating networks

  • Robert J. Moon
  • Mark Hoffman
  • Shigemi Tochino
  • Chang Joo Lee
  • Giuseppe Pezzotti
Article

Abstract

Fluorescence microprobe spectroscopy was used to characterize the stress fields that develop within an interpenetrating Al–Al2O3 composite resulting from both the thermal expansion mismatch during sample processing, and from an external applied load. The 30 vol% Al–70 vol% Al2O3 composite that was investigated had an aluminum and alumina phase feature size of 50–100 μm. The residual thermal compressive stress measured in the alumina was ∼40–340 MPa. The effect of varying the metal ligament size on the residual stress distribution is discussed. Additionally, the application of an external load caused a non-uniform stress distribution to develop within the alumina regions around the crack-tip, which was attributed to microstructure inhomogeneities. The crack was further extended and the influence of the stress distribution within the alumina regions on the crack extension direction is briefly discussed.

Keywords

Residual Thermal Stress Alumina Phase External Applied Load Thermal Stress Distribution Al2O3 Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors sincerely thank Prof. Jürgen Rödel of the Technische Universitaet Darmstadt, Germany for use of equipment and assistance during sample preparation. Additionally, the authors would like to thank Lyndal Rutgers of the University of New South Wales for providing the epoxy-alumina sample. This work was supported by the Australian Research Council, the Australian Academy of Science and the Japan Society for the Promotion of Science.

References

  1. 1.
    Venkateswara Rao KT, Soboyelo WO, Ritchie RO (1992) Metall Trans A 23A:2249Google Scholar
  2. 2.
    Badrinarayanan K, McKelvey AL, Venkateswara Rao KT, Ritchie RO (1996) Metall Trans A 27A:3781Google Scholar
  3. 3.
    Bloyer DR, Venkateswara Rao KT, Ritchie RO (1998) Metall Trans A 29A:2483Google Scholar
  4. 4.
    Prielipp H, Knechtel M, Claussen N, Streiffer S, Müllejans H, Rühle M, Rödel J (1995) Mater Sci Engng 197A:19CrossRefGoogle Scholar
  5. 5.
    Neubrand A, Chung T-J, Rödel J, Steffler ED, Fett T (2002) J Mater Res 17(11):2912Google Scholar
  6. 6.
    Moon RJ, Tilbrook M, Hoffman M, Neubrand A (2005) J Am Ceramic Soc 88(3):666CrossRefGoogle Scholar
  7. 7.
    Hoffman M, Skirl S, Pompe W, Rödel J (1999) Acta Mater 47:565CrossRefGoogle Scholar
  8. 8.
    Hoffman M, Fiedler B, Emmel T, Prielipp H, Claussen N, Gross D, Rödel J (1997) Acta mater 45:3609CrossRefGoogle Scholar
  9. 9.
    Skirl S, Hoffman M, Bowman K, Wiederhorn S, Rödel J (1998) Acta Mater 46:2493CrossRefGoogle Scholar
  10. 10.
    Hoffman M, Rödel J, Skirl S, Zimmermann A, Fuller E, Mullejans H (1999) Key Eng Mater 159–160:311CrossRefGoogle Scholar
  11. 11.
    Ashby MF, Blunt FJ, Bannister M (1989) Acta Metall 37:1847CrossRefGoogle Scholar
  12. 12.
    Pezzotti G, Muller WH (2002) Continuum Mech Thermodyn 14:113CrossRefGoogle Scholar
  13. 13.
    Wang C, Libardi W, Baldo JB (1998) Int J Fracture 94:177CrossRefGoogle Scholar
  14. 14.
    Kassam ZHA, Zhang RJ, Wang Z (1995) Mat Sci Eng A203:286Google Scholar
  15. 15.
    Li Z, Chen Q (2003) Eng Frac Mech 70:581CrossRefGoogle Scholar
  16. 16.
    Butcher RJ, Rousseau CE, Tippur HV (1999) Acta Mater 47(1):259CrossRefGoogle Scholar
  17. 17.
    Kubler J (1997) Ceram Eng Sci Proc 18:155CrossRefGoogle Scholar
  18. 18.
    Pezzotti G, Sbaizero O (2001) Mat Sci Eng A303:267Google Scholar
  19. 19.
    He J, Clarke DR (1995) J Am Ceram Soc 78:1347CrossRefGoogle Scholar
  20. 20.
    Ma Q, Clarke DR (1993) J Am Ceram Soc 76:1433Google Scholar
  21. 21.
    Tilbrook M, Moon R, Hoffman M (2005) Mat Sci Eng A393:170Google Scholar
  22. 22.
    ASTM Standard E 1820-96 (1997) Standard test method for measurement of fracture toughness. ASTM, Philadelphia, PaGoogle Scholar
  23. 23.
    Agrawal P, Conlon K, Bowman KJ, Sun CT, Chichocki FR Jr, Trumble KP (2003) Acta Mater 51:1143CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Robert J. Moon
    • 1
    • 3
  • Mark Hoffman
    • 1
  • Shigemi Tochino
    • 2
  • Chang Joo Lee
    • 2
  • Giuseppe Pezzotti
    • 2
  1. 1.School of Materials Science and EngineeringThe University of New South WalesSydneyAustralia
  2. 2.Department of Materials, Ceramic Physics LaboratoryKyoto Institute of TechnologyKyotoJapan
  3. 3.Department of AgricultureForest Service: Forest Products LaboratoryMadisonUSA

Personalised recommendations