Journal of Materials Science

, Volume 42, Issue 7, pp 2476–2485 | Cite as

Characterization of electrical behaviour of Si modified BaSnO3 electroceramics using impedance analysis



The compounds BaSn1−x Si x O3 (x = 0–15 mol%) have been prepared by high temperature solid-state reaction route. Powder X-ray diffraction pattern of the samples reveal the formation of a single phase solid solution. It was found that single phase compositions have a cubic crystal structure similar to that of pure barium stannate at room temperature. The a.c. impedance analysis has been carried out in the frequency range 100 Hz–1 MHz for temperature ranging from 300 K to 750 K. Analysis of a.c. impedance data using the complex impedance plane gives the a.c. and d.c. resistance of negative temperature resistance of coefficient (NTCR) electroceramics. Complex impedance plane and complex electric modulus formalism are employed to determine the inhomogeneous nature of the electroceramics. This reveals the presence of single elements in the equivalent circuit at elevated temperature. Grain effects are more prominent than that of grain boundary effect at elevated temperature in the material matrix. The electrical conductivity increases sharply with rise in temperature at elevated temperature due to the thermally activated cations. Master modulus analysis provided an evidence of non-exponential type conductivity relaxation occurring in the materials at higher temperatures.


Modulus Formalism Equivalent Electrical Circuit High Frequency Side Complex Impedance Plane Single Phase Solid Solution 


  1. 1.
    Claessen R, Smith MG, Goodenough JB (1993) Phys Rev B 47(4):1788CrossRefGoogle Scholar
  2. 2.
    Udawatte CP, Kakihana M, Yoshimura M (2000) Solid State Ionics 128:217CrossRefGoogle Scholar
  3. 3.
    Young LM (1979) J Mater Sci 14:1579CrossRefGoogle Scholar
  4. 4.
    Lu W, Jiang S, Zhou D, Gong S (2000) Sensors Actuat A: Phys 80(1):35CrossRefGoogle Scholar
  5. 5.
    Licheron M, Jouan G, Husson E (1997) J Eur Ceramic Soc 17:1453CrossRefGoogle Scholar
  6. 6.
    Azad AM, Shyam LLW, Yen PT (1999) J Alloys Comp 282:109CrossRefGoogle Scholar
  7. 7.
    Jayaraman V, Mangamma G, Gnasekaram T, Periaswami G (1996) Solid State Ionics 86:1111CrossRefGoogle Scholar
  8. 8.
    Rai RS, Sharama S, Choudhary RNP (2002) Ferroelectric 275:11CrossRefGoogle Scholar
  9. 9.
    Singh NK, Choudhary RNP, (2000) Ferroelectrics 242(1–4):89Google Scholar
  10. 10.
    Ginlely DS, Bright C (2000) Mater Res Soc Bull 25:15Google Scholar
  11. 11.
    Cerda J, Arbiol J, Dezanneau G, Diaz R, Morante JR (2002) Sensors Actuat B4:1Google Scholar
  12. 12.
    Ostrick B, Fleischer M, Lampe U, Meixner H (1997) Sensors Actuat B44:601CrossRefGoogle Scholar
  13. 13.
    Shimizu Y, Narikiyo T, Arai H, Seiyama T (1985) Chem Lett 377Google Scholar
  14. 14.
    Keppel A, Meixner H, Mock R (November 1998) (Siemens AG, Germany) US Patent 5840255, 24Google Scholar
  15. 15.
    Ku JK (June 1994) (Sam Hwa Capacitor, Korea), KR Patent 9405 993, 30Google Scholar
  16. 16.
    Kutty TRN, Vivekanandan R (1987) Mater Res Bull 11:1457CrossRefGoogle Scholar
  17. 17.
    Parida SC, Banerjee A, Das S, Prasad R, Singh Z, Venugopal V (2002) J Chem Thermodyn 34:527CrossRefGoogle Scholar
  18. 18.
    Tao S, Gao F, Liu X, Sorensen OT (2000) Sensors Actuat B 71:223CrossRefGoogle Scholar
  19. 19.
    Lampe U, Gerbling J, Meixner H (1995) Sensors Actuat B 24:657CrossRefGoogle Scholar
  20. 20.
    JCPDS File No: 15-780Google Scholar
  21. 21.
    POWDMULT: An Interactive Powder Diffraction Data Interpretation and Indexing ProgramVersion 2.1, E.Wu, School of Physical Sciences, Flinder University of South Australia, Bradford Park, SA 5042, AustraliaGoogle Scholar
  22. 22.
    Patel HK, Martin SW (1992) Phys Rev B 45:18CrossRefGoogle Scholar
  23. 23.
    Sinclair DC, West AR (1989) J Appl Phys 66(8):15CrossRefGoogle Scholar
  24. 24.
    James AR, Priya S, Uchino K, Srinivas K (2001) J Appl Phys 90:3504CrossRefGoogle Scholar
  25. 25.
    Bahuguna Saradhi V, Srinivas K, Prasad G, Suryanarayana SV, Bhimasankaram T (2003) Mater Sci Eng B 98:10CrossRefGoogle Scholar
  26. 26.
    Selvasekarapandian S, Vijaykumar M (2003) Mater Chem Phys 80:30Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Metallurgy and Materials EngineeringIndian Institute of TechnologyKharagpurIndia
  2. 2.Department of Physics and MeteorologyIndian Institute of TechnologyKharagpurIndia

Personalised recommendations