Journal of Materials Science

, Volume 41, Issue 22, pp 7466–7473 | Cite as

Effect of chopped Si–Al–C fiber addition on the mechanical properties of silicon carbide composite

  • Masanori Sato
  • Kiyoshi Itatani
  • Tsuyoshi Tanaka
  • Ian J. Davies
  • Seiichiro Koda


Silicon carbide (SiC) composites containing 0–50 mass% of chopped Tyranno® Si–Al–C (SA) fiber (mean length: 214 μm (SA(214)), 394 μm (SA(394)), and 706 μm (SA(706)) were fabricated using the hot-pressing technique at 1800 °C for 30 min under a uniaxial pressure of 31 MPa in Ar atmosphere. The maximum flexural strength of the SiC composite was 344 MPa for 30 mass% of SA(706) fiber addition, whilst the maximum fracture toughness was 4.7 MPa m1/2 for 40 mass% of SA(706) fiber addition. Increasing the mean fiber length from 214 to 706 μm decreased the flexural strength from 380 to 281 MPa for 30 mass% of fiber addition, whilst the fracture toughness increased from 3.4 to 4.7 MPa m1/2 for 40 mass% of fiber addition. Through use of a treated SA(706) fiber containing an approximately 100 nm surface layer of carbon, the fracture toughness further increased to 6.0 MPa m1/2 for 40 mass% of fiber addition; this value was more than twice that of the monolithic SiC ceramic and is believed to be the highest so far achieved for this type of SiC/SiC composite containing chopped fibers.


Fracture Toughness Flexural Strength Fiber Length Notch Radius Fiber Addition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to express their thanks to Dr. M. Shibuya of Ube Industries, Ltd., for providing the Tyranno® Si–Al–C fibers used in this work and for measuring the Auger depth profile of the SA(706)/C fiber.


  1. 1.
    Srinivasan M, (1989) Treatise on materials science and technology, vol 29. Academic Press, Inc., p 99Google Scholar
  2. 2.
    Schlichting J, Riley FL (1991) In: Brook RJ (ed) Concise encyclopedia of advanced ceramic materials, Pergamon press, Oxford, UK, p 426Google Scholar
  3. 3.
    Pluvinage P, Parvizi-majidi A, Chou TW (1996) J Mater Sci 31:232CrossRefGoogle Scholar
  4. 4.
    Ishikawa T, Yamamura Y, Hirokawa T, Hayashi Y, Noguchi Y, Matsushima M (1993) In: Miravette A (ed) Proceedings of the ninth international conference on composite materials, Woodhead publishing Co., Cambridge, UK, p 137Google Scholar
  5. 5.
    Dong SM, Chollon G, Labrugere C, Lahaye M, Guette A, Naslain R, Jiang DL (2001) J Mater Sci 36:2371CrossRefGoogle Scholar
  6. 6.
    He M-Y, Hutchinson JW (1989) Int J Solids Structures 25:1053CrossRefGoogle Scholar
  7. 7.
    Evans AG, He M-Y, Hutchinson JW (1989) J Am Ceram Soc 72:2300CrossRefGoogle Scholar
  8. 8.
    Evans AG, Zok FW (1994) J Mater Sci 29:3857CrossRefGoogle Scholar
  9. 9.
    Davies IJ, Abe S, Pezzotti G, Kleebe H-J, Nishida T (2000) Maters Letts 43:203CrossRefGoogle Scholar
  10. 10.
    Itatani K, Hattori K, Harima D, Aizawa M, Okada I, Davies IJ, Suemasu H, Nozue A (2001) J Mater Sci 36:3679CrossRefGoogle Scholar
  11. 11.
    Lee J-S, Yoshida K, Yano T (2002) J Ceram Soc Jpn 110:985Google Scholar
  12. 12.
    Lee J-S, Imai T, Yano T (2003) Maters Sci Eng A339:90CrossRefGoogle Scholar
  13. 13.
    Lee J-S, Yano T (2004) J Eur Ceram Soc 24:25CrossRefGoogle Scholar
  14. 14.
    Ishikawa T, Kohtoku Y, Kumagawa K, Yamamura T, Nagasawa T (1998) Nature 391:773CrossRefGoogle Scholar
  15. 15.
    Itatani K, Tanaka T, Suemasu H, Nozue A, Davies IJ (2005) J Australasian Ceram Soc 41:1Google Scholar
  16. 16.
    Damani R, Gstrein R, Danzer R (1996) J Eur Ceram Soc 16:695CrossRefGoogle Scholar
  17. 17.
    Nishida T, Hanaki Y, Pezzotti G (1994) J Am Ceram Soc 77:606CrossRefGoogle Scholar
  18. 18.
    Rieder K-A, Tschegg EK, Harmuth H (1998) J Maters Sci Letts 17:675CrossRefGoogle Scholar
  19. 19.
    Mukhopadhyay AK, Datta SK, Chakraborty D (1999) Ceramics Int 25:447CrossRefGoogle Scholar
  20. 20.
    Suemitsu T, Takashima A, Nishikawa H (1995) J Am Ceram Soc 103:479Google Scholar
  21. 21.
    Powers JM, Somorjai GA (1991) Surf Sci 244:39CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Binner J (2002) J Am Ceram Soc 85:529Google Scholar
  23. 23.
    Okamoto H (1992) J Phase Equil 13:97Google Scholar
  24. 24.
    Pask JA, Aksay IA (1975) J Am Ceram Soc 58:507CrossRefGoogle Scholar
  25. 25.
    Kim Y-W, Lee J-G, Kim M-S, Park J-H (1996) J Mater Sci 31:335CrossRefGoogle Scholar
  26. 26.
    Akatsu T, Tanabe Y, Yasuda E (1999) J Mater Res 14:1316Google Scholar
  27. 27.
    Suemasu H, Kondo A, Itatani K, Nozue A (2001) Compos Sci Technol 61:281CrossRefGoogle Scholar
  28. 28.
    Kmetz M, Suib S, Galasso F (1990) J Am Ceram Soc 73:3091CrossRefGoogle Scholar
  29. 29.
    Prouhet S, Camus G, Lamrugere C, Guette A, Martin E (1994) J Am Ceram Soc 77:649CrossRefGoogle Scholar
  30. 30.
    Thouless MD, Sbaizero O, Sigl LS, Evans AG (1989) J Am Ceram Soc 72:525CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Masanori Sato
    • 1
  • Kiyoshi Itatani
    • 1
  • Tsuyoshi Tanaka
    • 1
  • Ian J. Davies
    • 2
  • Seiichiro Koda
    • 1
  1. 1.Department of Chemistry, Faculty of Science and Engineering Sophia UniversityChiyoda-ku, TokyoJapan
  2. 2.Department of Mechanical EngineeringCurtin University of TechnologyPerthAustralia

Personalised recommendations