Skip to main content
Log in

Oxidation of gold metal particles supported on TiO2: an FTIR study by means of low-temperature CO adsorption

  • Size-Dependent Effects
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two Au/TiO2 samples with different gold loadings (0.7 and 4.0 wt.% Au) were prepared by deposition-precipitation with urea and calcined at 673 K. TEM revealed gold particles of 3.2 and 3.9 nm for the 0.7 and 4.0 wt.% samples, respectively. The samples were subjected to different red-ox treatments and then the state of gold was determined by the FTIR spectra of CO adsorbed at low temperature. Several kinds of gold carbonyl species were detected during the experiments: (i) Au0–CO at around 2107 cm−1; (ii) Au+–CO at ca. 2175 cm−1; (iii) Auδ+–CO in the region of 2140–2137 cm−1 and (iv) Auδ′+–CO (δ > δ) at around 2155 cm−1. The 4.0 wt.% sample contained mainly metallic gold after evacuation at 673 K. Subsequent interaction with oxygen at 373 K leads to oxidation of a fraction of the surface metallic gold sites to Auδ+ sites. These sites were considered as cations located on the surface of the metal particles with a partially positive charge δ+ (0 < δ < 1) because of electron transfer from the gold bulk. Evacuation at 673 K leads to back reduction of the Auδ+ sites to metallic gold. The oxidation of gold particles was more efficient when performed with a NO + O2 mixture. It resulted in creation of Auδ′+ sites with a higher positive charge than that of the Auδ+ sites. In this case the oxidation involved a higher number of Au0 sites. A similar treatment of the 0.7 wt.% Au sample, however, resulted in formation of “isolated” Au+ species. The results indicate that small metal particles are more easily oxidized by a NO + O2 mixture. A model of the formation of the different sites, explaining well the experimental results, is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arii S, Mortin F, Renouprez AJ, Rousset JL (2004) J Am Chem Soc 126:1199

    Article  Google Scholar 

  2. Haruta M (2002) CATTECH 6:102

    Article  CAS  Google Scholar 

  3. Grunwaldt J-D, Maciejewski M, Becker O, Fabrizioli P, Baiker A (1999) J Catal 186:458

    Article  CAS  Google Scholar 

  4. Boyd D, Golunski S, Hearne G, Magadzu T, Mallick K, Raphulu M, Venugopal A, Scurrell M (2005) Appl Catal A292:76

    Article  Google Scholar 

  5. Fierro-Gonzalez JC, Gates BC (2004) J Phys Chem 108:16999

    Article  CAS  Google Scholar 

  6. Minico S, Scire S, Crisafalli C, Visco A, Galvagno S (1997) Catal Lett 47:273

    Article  CAS  Google Scholar 

  7. Hadjiivanov K, Vayssilov G (2002) Adv Catal 47:307

    CAS  Google Scholar 

  8. Davydov A (2003) Molecular Spectroscopy of Oxide Catalyst Surfaces. Wiley, Chichester

    Book  Google Scholar 

  9. Knözinger H (1997) In: Ertl G, Knözinger H, Weitkamp J (eds), Handbook of Heterogeneous Catalysis, vol 2. Wiley–VCH, Weinheim, p 707

  10. Boccuzzi F, Chiorino A, Tsubota S, Haruta M (1996) J Phys Chem 100:3625

    Article  CAS  Google Scholar 

  11. Boccuzzi F, Chiorino A, Manzoli M (2000) Surf Sci 454–456:942

    Article  Google Scholar 

  12. Boccuzzi F, Chiorino A, Manzoli M, Lu P, Akita T, Ichikawa S, Haruta M (2001) J Catal 202:256

    Article  CAS  Google Scholar 

  13. Boccuzzi F, Chiorino A, Manzoli M (2002) Surf Sci 513:502–503

    Google Scholar 

  14. Guillemot D, Borovkov V, Kazansky V, Polisset-Thfoin M, Fraissard J (1997) J Chem Soc Faraday Trans 93:3587

    Article  CAS  Google Scholar 

  15. Maciejewski M, Fabrizioli P, Grunwaldt J-D, Becker OS, Baiker A (2001) Phys Chem Chem Phys 3:3846

    Article  CAS  Google Scholar 

  16. Venkov Tz, Fajerwerg K, Delannoy L, Klimev Hr, Hadjiivanov K, Louis C (2006) Appl Catal A301:106

    Article  Google Scholar 

  17. Venkov Tz, Klimev Hr, Centeno MA, Odriozola JA, Hadjiivanov K (2006) Catal Commun 7:308

    Article  CAS  Google Scholar 

  18. Jia J, Kondo JN, Domen K, Tamaru K (2001) J Phys Chem B 105:3017

    Article  CAS  Google Scholar 

  19. Lemire C, Meyer R, Shaikhutdinov Sh, Freund H-J (2004) Surf Sci 552:27

    Article  CAS  Google Scholar 

  20. Fierro-Gonzalez JC, Anderson BG, Ramesh K, Vinod CP, Niemantsverdriet JWH, Gates BC (2005) Catal Lett 101:265

    Article  CAS  Google Scholar 

  21. Pestryakov A, Lunin V, Kharlanov A, Kochubey D, Bogdanchikova N, Stakheev A (2002) J Mol Struct 642:129

    Article  CAS  Google Scholar 

  22. Boccuzzi F, Chiorino A, Manzoli M (2001) Mater Sci Eng C15:215

    Article  CAS  Google Scholar 

  23. Carrettin S, Corma A, Iglesias M, Sanchez F (2005) Appl Catal A291:247

    Article  Google Scholar 

  24. Gao Z-X, Sun Q, Chen H-Y, Wang X, Sachtler WMH (2001) Catal Lett 72:1

    Article  CAS  Google Scholar 

  25. Yates DJC (1969) J Colloid Interface Sci 29:194

    Article  CAS  Google Scholar 

  26. Okumura K, Yoshino K, Kato K, Niwa M (2005) J Phys Chem B109:12380

    Article  Google Scholar 

  27. Grunwaldt JD, Baiker A (1999) J Phys Chem B103:1002

    Article  Google Scholar 

  28. Haruta M (1997) Catal Surv Jpn 1:61

    Article  CAS  Google Scholar 

  29. Boccuzzi F, Cerrato G, Pinna F, Strukul G (1998) J Phys Chem B 102:5733

    Article  CAS  Google Scholar 

  30. Mihaylov M, Fierro-Gonzalez JC, Knozinger H, Gates B, Hadjiivanov K (2006) J Phys Chem B 110:7695

    Article  CAS  Google Scholar 

  31. Concepción P, Carrettin S, Corma A (2006) Appl Catal A 307:42

    Article  Google Scholar 

  32. Dekkers M, Lippits M, Nieuwenhuys B (1998) Catal Lett 56:195

    Article  CAS  Google Scholar 

  33. Mohamed M, Salama T, Ichikawa M (2000) J Colloid Interface Sci 224:366

    Article  CAS  Google Scholar 

  34. Miller JT, Kropf AJ, Zha Y, Regalbuto JR, Delannoy L, Louis C, Bus E, van Bokhoven JA (2006) J Catal 240:222

    Article  CAS  Google Scholar 

  35. Zanella R, Giorgio S, Henry CR, Louis C (2002) J Phys Chem B 103:7634

    Article  Google Scholar 

  36. Busca G, Saussey H, Saur O, Lavalley J-C, Lorenzelli V (1985) Appl Catal 14:245

    Article  CAS  Google Scholar 

  37. Hadjiivanov K, Klissurski D (1996) Chem Soc Rev 25:61

    Article  CAS  Google Scholar 

  38. Hadjiivanov K, Lamotte J, Lavalley J-C (1997) Langmuir 13:3374

    Article  CAS  Google Scholar 

  39. Hadjiivanov K (2000) Catal Rev Sci Eng 42:71

    Article  CAS  Google Scholar 

  40. van Bokhoven JA, Louis C, Miller JT, Tromp M, Safonova OV, Glatzel P, Ang Chemie, 2006, DOI: 10.1002/anie.200123456

  41. Meyer R, Lemire C, Shaikhutdinov SK, Freund HJ (2004) Gold Bull 37:72

    Article  CAS  Google Scholar 

  42. Richardson PC, Rossington DR (1971) J Catal 20:420

    Article  CAS  Google Scholar 

  43. Fu L, Wu NQ, Yang JH, Qu F, Johnson DL, Kung MC, Kung HH, David VP (2005) J Phys Chem B 109:3704

    Article  CAS  Google Scholar 

  44. Guzman J, Gates BC (2003) J Phys Chem B 107:2242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Egide, France (Project ECO-NET No 101186SH). We also thank S. Pronier for the TEM analyses and L.T.N. Nguyen for the preparation of the Au/TiO2 (0.7 Au wt %) sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hadjiivanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimev, H., Fajerwerg, K., Chakarova, K. et al. Oxidation of gold metal particles supported on TiO2: an FTIR study by means of low-temperature CO adsorption. J Mater Sci 42, 3299–3306 (2007). https://doi.org/10.1007/s10853-006-0777-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0777-1

Keywords

Navigation