Advertisement

Journal of Materials Science

, Volume 42, Issue 5, pp 1501–1511 | Cite as

Influence of crystal orientation on the processing of copper single crystals by ECAP

  • Yukihide Fukuda
  • Keiichiro Oh-ishi
  • Minoru Furukawa
  • Zenji Horita
  • Terence G. Langdon
Nano May 2006

Abstract

Single crystals of high-purity copper, having two different orientations, were pressed through one pass in equal-channel angular pressing (ECAP) at room temperature and then examined using several different analytical techniques. For both orientations, it is shown that elongated arrays of cells or subgrains are formed in the first pass with their long axes aligned parallel to the primary \({(\bar {1}\bar {1}\bar {1})[\bar {1}10]}\) slip system. The average width of these subgrains was measured as ∼0.2 μm which is similar to the equilibrium grain size reported in polycrystalline Cu after processing by ECAP. These results confirm earlier observations using an aluminum single crystal except only that the subgrain width in copper is significantly smaller. This difference is attributed to the lower stacking-fault energy in copper and the consequent low rate of recovery.

Keywords

Slip System Pole Figure Select Area Electron Diffraction Pattern Initial Orientation Slip Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported in part by the Light Metals Educational Foundation of Japan and in part by the National Science Foundation of the United States under Grant No. DMR-0243331.

References

  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:102CrossRefGoogle Scholar
  2. 2.
    Lowe TC, Zhu YT (2003) Adv Eng Mater 5:373CrossRefGoogle Scholar
  3. 3.
    Segal VM (1995) Mater Sci Eng A197:157CrossRefGoogle Scholar
  4. 4.
    Segal VM (2004) Mater Sci Eng A386:269Google Scholar
  5. 5.
    Horita Z, Fujinami T, Langdon TG (2001) Mater Sci Eng A318:34Google Scholar
  6. 6.
    Semiatin SL, DeLo DP (2000) Mater Design 21:311CrossRefGoogle Scholar
  7. 7.
    Alexandrov IV, Raab GI, Shestakova LO, Valiev RZ, Dowding RJ (2000) In: Greenfield MS, Oakes JJ (eds) Tungsten, hard metals and refractory alloys 5. Metal Powder Industries Federation, Princeton NJ, pp 27–45Google Scholar
  8. 8.
    Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A257:328Google Scholar
  9. 9.
    Furukawa M, Horita Z, Langdon TG (2002) Mater Sci Eng A332:97Google Scholar
  10. 10.
    Fukuda Y, Oh-ishi K, Furukawa M, Horita Z, Langdon TG (2004) Acta Mater 52:1387CrossRefGoogle Scholar
  11. 11.
    Furukawa M, Kawasaki Y, Miyahara Y, Horita Z, Langdon TG (2005) Mater Sci Eng A410–411:194Google Scholar
  12. 12.
    Fukuda Y, Oh-ishi K, Furukawa M, Horita Z, Langdon TG (2006) Mater Sci Eng A420:79Google Scholar
  13. 13.
    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143CrossRefGoogle Scholar
  14. 14.
    Yoshida Y, Cisar L, Kamado S, Koike J, Kojima Y (2003) Mater Sci Forum 419–422:533CrossRefGoogle Scholar
  15. 15.
    Kim HS, Seo MH, Hong SI (2000) Mater Sci Eng A291:86Google Scholar
  16. 16.
    Kim HS (2001) Mater Sci Eng A315:122Google Scholar
  17. 17.
    Park JW, Suh JY (2001) Metall Mater Trans A 32A:3007Google Scholar
  18. 18.
    Kim HS (2002) J Mater Res 17:172Google Scholar
  19. 19.
    Semiatin SL, DeLo DP, Park JW (2002) J Mater Proc Tech 122:255CrossRefGoogle Scholar
  20. 20.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317CrossRefGoogle Scholar
  21. 21.
    Terhune SD, Swisher DL, Oh-ishi K, Horita Z, Langdon TG, McNelley TR (2003) Metall Mater Trans A 33A:2173Google Scholar
  22. 22.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Metall Mater Trans A 29A:2503Google Scholar
  23. 23.
    Komura S, Horita Z, Nemoto M, Langdon TG (1999) J Mater Res 14:4044Google Scholar
  24. 24.
    Miyamoto H, Erb U, Koyama T, Mimaki T, Vinogradov A, Hashimoto S (2004) Philos Magn Lett 84:235CrossRefGoogle Scholar
  25. 25.
    Miyamoto H, Fushimi J, Mimaki T, Vinogradov A, Hashimoto S (2005) Mater Sci Eng A405:221Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Yukihide Fukuda
    • 1
  • Keiichiro Oh-ishi
    • 1
  • Minoru Furukawa
    • 2
  • Zenji Horita
    • 1
  • Terence G. Langdon
    • 3
  1. 1.Department of Materials Science and Engineering, Faculty of EngineeringKyushu UniversityFukuokaJapan
  2. 2.Department of TechnologyFukuoka University of EducationMunakata, FukuokaJapan
  3. 3.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations