Skip to main content
Log in

A new challenge: grain boundary engineering for advanced materials by magnetic field application

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper gives an overview of “Grain boundary engineering (GBE) for advanced materials by magnetic field application” based on recent experimental work performed on different kinds of structural and functional materials. It is shown that magnetic field application has a great potential and unique advantage as “non-contact processing” for microstructure control, irreplaceable by any other existing processing methods. The control of grain growth and texture by magnetic fields has been found to be generally applicable to many metallic materials, irrespective of whether they are ferromagnetic or not. Grain growth which is controlled by grain boundary migration was found to be strongly affected by magnetic field application. Recent attempts at the grain boundary engineering by magnetic field application through phase transformation have revealed that magnetic phase transformation can provide us a new approach to grain boundary engineering for iron alloys and steels, as well as a new nanocrystalline material produced by magnetic crystallization from the amorphous state. The possibility of engineering applications of enhanced densification using magnetic sintering and magnetic rejuvenation has been discussed for iron powder compacts and deformation-damaged iron alloys, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Metal Interfaces, ASM (1951)

  2. McLean D (1957) Grain boundaries in metals. Oxford University Press

  3. Gleiter H, Chalmers B (1972) Progress in Materials Science, vol 16. Pergamon Press, pp 1–274

  4. Chadwick AG, Smith DA (eds) (1976) Grain boundary structure and properties. Academic Press

  5. Balluffi RW (ed) (1980) Grain boundary structure and kinetics, ASM

  6. Wolf D, Yip S (eds) (1992) Materials interfaces, Chapman & Hall

  7. Ranganathan S, Pande CS, Rath BB, Smith DA (eds) (1993) Interfaces: structure and properties. Trans. Tech. Pub

  8. Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Oxford University Press

  9. Watanabe T (1984) Res Mechanica 11:47

    CAS  Google Scholar 

  10. Aust KT, Palumbo G (1989) In: Wilkinson DS (ed) Proc. Intern. Symp. on Advanced Structural Materials. Pergamon Press, p 215

  11. Watanabe T (1993) In: Erb U, Palumbo G (eds) Proc. the K.T. Aust Intern. Symp. on Grain Boundary Engineering. Can. Inst. Min. Met. Petro., p 57

  12. Watanabe T (1993) Mater Sci Eng A166:11

    Article  CAS  Google Scholar 

  13. Palumbo G, Lehockey EM, Lin P (1998) J Metals 50(2):40

    CAS  Google Scholar 

  14. Watanabe T, Tsurekawa S (1999) Acta Mater 47:4171

    Article  CAS  Google Scholar 

  15. Watanabe T et al (eds) (2002) Proc.7th Japan-France Materials Science Seminar on, Interfaces and Related Phenomena, Ann. Chim. Sci. Mat., 27, Suppl

  16. Watanabe T, Tsurekawa S (eds) (2005) J. Mater. Sci., Spec. Issue on Grain Boundary and Interface Engineering, 40, No.4, pp 817–932

  17. McLean M (1982) Metal Sci 16:31

    Article  Google Scholar 

  18. Watanabe T (2001) In: Gottstein G, Molodov DA (eds) Proc. First Joint Intern. Conf. on Recrystallization and Grain Growth. Springer-Verlag, p 11

  19. Tsurekawa S, Watanabe T (2003) Mater Sci Forum 426–432:3819

    Article  Google Scholar 

  20. Watanabe T, Tsurekawa S, Zhao X, Zuo L (2006) Scripta Mater 54:969

    Article  CAS  Google Scholar 

  21. Mullins WW (1956) Acta Metall 4:421

    Article  CAS  Google Scholar 

  22. Adams B, Wright S, Kunze K (1993) Metall Trans A24:819

    Article  Google Scholar 

  23. Dingley D, Field D (1996) In: Hondros ED, McLean M (eds) Proc. the Donald McLean Symp. on Structural Materials. The Institute of Materials, p 23

  24. Schwartz AD, Kumar M, Adams BL (eds) (2000) Electron Backscatter Diffraction in Materials Science, Kluwer Academic/Plenum Pub

  25. Martikainen HO, Lindroos VK (1981) Scand J Metall 10:3

    CAS  Google Scholar 

  26. Watanabe T, Suzuki Y, Tanii S, Oikawa H (1990) Phil Mag Lett 62:9

    Article  CAS  Google Scholar 

  27. Watanabe T, Fujii H, Oikawa H, Arai KI (1989) Acta Metall 37:941

    Article  CAS  Google Scholar 

  28. Watanabe T, Tsurekawa S, Fujii H, Kanno T (2005) Mater Sci Forum 495–497:1151

    Article  Google Scholar 

  29. Watanabe T (1993) Texture Microstruct 20:195

    Article  Google Scholar 

  30. Zuo L, Watanabe T, Esling C (1994) Z Metallkde 85:554

    CAS  Google Scholar 

  31. Tsurekawa S, Kawahara K, Okamoto K, Watanabe T, Faulkner R (2004) Mater Sci Eng A387–389:442

    Article  Google Scholar 

  32. Tsurekawa S, Okamoto K, Kawahara K, Watanabe T (2004) J Mater Sci 40:895

    Article  Google Scholar 

  33. Aust KT, Rutter JW (1959) Trans AIME 215:820

    CAS  Google Scholar 

  34. Watanabe T, Kitamura S, Karashima S (1980) Acta Metall 28:455

    Article  CAS  Google Scholar 

  35. Lejcek P, Hofmann S (1993) Interface Sci 1:163, (1996) Interface Sci 3:241

  36. Molodov DA, Gottstein G, Heringhaus F, Shvindlerman LS (1997) Scripta Mater 37:207, (1998) Acta Mater 46:5627

  37. Sheikh-Ali AD, Molodov DA, Garmestani H (2003) Scripta Mater 48:483

    Article  CAS  Google Scholar 

  38. Sheikh-Ali AD, Molodov DA, Garmestani H (2002) Scripta Mater 46:857

    Article  CAS  Google Scholar 

  39. Molodov DA, Sheikh-Ali AD (2004) Acta Mater 52:4377

    Article  CAS  Google Scholar 

  40. Molodov DA (2004) Mater Sci Forum 467–470:697

    Article  Google Scholar 

  41. Harada K, Tsurekawa S, Watanabe T, Palumbo G (2003) Scripta Mater 49:357

    Article  Google Scholar 

  42. Matsuzaki M, Yamada T, Jyuami K, Tsurekawa S, Watanabe T, Palumbo G (2004) Mat Res Soc Symp Proc 788:121

    Google Scholar 

  43. Watanabe T, Tsurekawa S, Palumbo G (2005) Solid State Phen 101–102:171

    Article  Google Scholar 

  44. Wang N, Wang Z, Aust KT, Erb U (1997) Acta Mater 45:1655

    Article  CAS  Google Scholar 

  45. Hibbard GD, McCrea JL, Palumbo G, Aust KT, Erb U (2002) Scripta Mater 47:83

    Article  CAS  Google Scholar 

  46. Fujii H, Tsurekawa S, Matsuzaki T, Watanabe T (2006) Phil Mag Lett 86:113

    Article  CAS  Google Scholar 

  47. Nakamichi S, Tsurekawa S, Morizono Y, Watanabe T, Nishida M, Chiba A (2005) J Mater Sci 40:3139

    Article  Google Scholar 

  48. He CS, Zhang YD, Zhao X, Zuo L et al (2003) Adv Eng Mater 5:579

    Article  CAS  Google Scholar 

  49. Zhang Y, He CS, Zhao X, Esling C, Zuo L (2004) Adv Eng Mater 6:310

    Article  CAS  Google Scholar 

  50. Zhang Y, He CS, Zhao X, Zuo L, Esling C, He J (2004) J Mag Mag Mater 284:287

    Article  CAS  Google Scholar 

  51. Zhang Y, Gey N, He C, Zhao X, Zuo L, Esling C (2004) Acta Mater 52:3467

    Article  CAS  Google Scholar 

  52. Zhang Y, Esling C, Lecombe JS, He CS, Zhao X, Zuo L (2005) Acta Mater 53:5213

    Article  CAS  Google Scholar 

  53. Choi JK, Ohtsuka H, Xu Y, Choo W-Y (2000) Scripta Mater 43:221

    Article  CAS  Google Scholar 

  54. Enomoto M, Guo H, Tazuke Y, Abe YR, Shimotomai M (2001) Met Mater Trans 32A:445

    Article  CAS  Google Scholar 

  55. Hao XJ, Ohtsuka H, Wada H (2003) Mater Trans 44:2532

    Article  CAS  Google Scholar 

  56. Shimotomai M, Maruta K, Mine K, Matsui M (2003) Acta Mater 51:2921

    Article  CAS  Google Scholar 

  57. Hao XJ, Ohtsuka H, de Rango P, Wada H (2003) Mater Trans 44:211

    Article  CAS  Google Scholar 

  58. Hao XJ, Ohtsuka H (2004) Mater Trans 45:2622

    Article  CAS  Google Scholar 

  59. Joo HD, Choi JK, Kim SU, Shin NS, Koo YM (2004) Met Mater Trans 35A:1663

    Article  CAS  Google Scholar 

  60. Jaramillo RA, Babu SS, Ludtka GM et al (2005) Scripta Mater 52:461

    Article  CAS  Google Scholar 

  61. Enomoto M (2005) Mater Trans 46:1088

    Article  CAS  Google Scholar 

  62. Budke E, Herzig CH, Wever H (1991) Phys Stat Sol 127:87

    Article  CAS  Google Scholar 

  63. Hillert M (1975) Met Trans 6A:5

    Article  Google Scholar 

  64. Lange WH, Enomoto M, Aaronson HI (1988) Met Trans 19A:427

    Article  CAS  Google Scholar 

  65. Massalski TB (2002) Met Mater Trans 33A:2277

    Article  CAS  Google Scholar 

  66. Hillert M (2002) Met Mater Trans 33A:2299

    Article  CAS  Google Scholar 

  67. Watanabe T, Obara K, Tsurekawa S, Gottstein G (2005) Z Metallkde 96:1196

    Article  CAS  Google Scholar 

  68. Matsuzaki T, Sasaki T, Tsurekawa S, Watanabe T (1999) Mater Sci Forum 304–306:585

    Article  Google Scholar 

  69. Tsurekawa S, Harada K, Sasaki T, Matsuzaki T, Watanabe T (2000) Mater Trans JIM 41:991

    Article  CAS  Google Scholar 

  70. Watanabe T, Nishizawa S, Tsurekawa S (2005) In: Turchi P et al (eds) Proc. the 3rd Intern. Alloy Conf. (IAC-3), “ Complex Inorganic Solids: Structure, Stability, and Magnetic Properties of Alloys”, Springer, pp 327–336

  71. Molodov DA, Konijnenberg PJ (2006) Scripta Mater 54:977

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge their coworkers who were involved in the reported work on grain boundary engineering by magnetic field application. One (T.W.) of the authors would like to express his sincere gratitude to Prof. S.-J.L. Kang and Prof. D.Y. Yoon for the provision of a pleasant stay at KAIST, Korea which enabled him to write this paper. The authors’ acknowledgement also goes to Dr. Victoria A. Yardley who kindly read and corrected the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadao Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, T., Tsurekawa, S., Zhao, X. et al. A new challenge: grain boundary engineering for advanced materials by magnetic field application. J Mater Sci 41, 7747–7759 (2006). https://doi.org/10.1007/s10853-006-0740-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0740-1

Keywords

Navigation