Journal of Materials Science

, Volume 42, Issue 14, pp 5795–5798 | Cite as

Fabrication and characterization of SiCw/MoSi2 composite from COSHSed powder

  • Jianguang Xu
  • Baolin Zhang
  • Guojian Jiang
  • Wenlan Li
  • Hanrui Zhuang


SiC whisker reinforced MoSi2 composite has been successfully fabricated by hot-press sintering from “chemical oven” combustion synthesized powder. After sintering, a uniform dispersion of SiC whiskers is obtained in the MoSi2 matrix. The Vickers hardness, flexural strength and fracture toughness of the SiCw/MoSi2 composite are 11.15 GPa, 457 MPa and 6.20 MPa·m1/2, increased by 26.1%, 134.3% and 47.3% as compared to MoSi2 matrix, respectively. At last, the mechanism of mechanical properties improvement was also proposed.


Fracture Toughness Flexural Strength Room Temperature Fracture Toughness Reactant Pellet Monolithic MoSi2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jeng YL, Lavernia EJ (1994) J Mater Sci 29:2557CrossRefGoogle Scholar
  2. 2.
    Lin WY, Hsu LY, Speyer RF (1994) J Am Ceram Soc 77(5):1162CrossRefGoogle Scholar
  3. 3.
    Petrovic JJ, (1995) Mater Sci Eng A192/193:31Google Scholar
  4. 4.
    Kharatyan SL, Sarkisyan AR (1993) Int J SHS 2(4):323Google Scholar
  5. 5.
    Gac FD, Petrovic JJ (1985) J Am Ceram Soc 68:C200CrossRefGoogle Scholar
  6. 6.
    Bhattacharrya AK, Petrovic JJ (1991) J Am Ceram Soc 74:2700CrossRefGoogle Scholar
  7. 7.
    Jiang W, Li JF, Tsuji K, Uchiyama T, Watanabe R (1997) J Ceram Soc Japan 105:223Google Scholar
  8. 8.
    Zheng LY, Jin YP, Li PX (1997) Comp Sci Tech 57:463CrossRefGoogle Scholar
  9. 9.
    Sun L, Pan JS (2002) Mater Lett 52:223CrossRefGoogle Scholar
  10. 10.
    Zhang XL, Lu ZL, Jin ZH (2004) Mater Chem Phys 86:16CrossRefGoogle Scholar
  11. 11.
    Oh DY, Kim HC, Yoon JK, Shon IJ (2005) J Alloy Comp 395:174CrossRefGoogle Scholar
  12. 12.
    Yoon JK, Kim GH, Doh JM, Hong KT, Kum DW (2005) Metal Mater Int 11:457CrossRefGoogle Scholar
  13. 13.
    Yang S, Chen N, Liu W, Zhong M (2003) Mater Lett 57:3412CrossRefGoogle Scholar
  14. 14.
    Lee JI, Hecht NL, Mah TI (1998) J Am Ceram Soc 81(2):421CrossRefGoogle Scholar
  15. 15.
    Costa e Silva A, Kaufman MJ (1995) Mater Sci Eng A195:75Google Scholar
  16. 16.
    Jayashankar S, Kaufman MJ (1993) J Mater Res 8:1428Google Scholar
  17. 17.
    Panneerselvam M, Agrawal A, Rao KJ (2003) Mater Sci Eng A356:267Google Scholar
  18. 18.
    Subrahmanyam J, Mohan Rao R (1995) J Am Ceram Soc 78:487CrossRefGoogle Scholar
  19. 19.
    Bartlett AH, Castro RG (1998) J Mater Sci 33:1653CrossRefGoogle Scholar
  20. 20.
    Subrahmanyam J (1993) J Am Ceram Soc 76:226CrossRefGoogle Scholar
  21. 21.
    Xu JG, Zhang BL, Li WL, Zhuang HR, Jiang GJ (2003) Ceram Int 29:543CrossRefGoogle Scholar
  22. 22.
    Chen DY, Zhang BL, Zhuang HR, Li WL, Xu SY (2002) Mater Res Bull 37:1481CrossRefGoogle Scholar
  23. 23.
    Xu JG, Zhang BL, Jiang GJ, Li WL, Zhuang HR (2006) Ceram Int 32:633Google Scholar
  24. 24.
    Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jianguang Xu
    • 1
    • 2
  • Baolin Zhang
    • 2
  • Guojian Jiang
    • 2
  • Wenlan Li
    • 2
  • Hanrui Zhuang
    • 2
  1. 1.School of Electromechanical EngineeringHunan University of Science and TechnologyXiangtanP.R. China
  2. 2.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiP.R. China

Personalised recommendations