Journal of Materials Science

, Volume 42, Issue 5, pp 1584–1593 | Cite as

Characterization of nanocrystalline materials by X-ray line profile analysis

  • Tamás Ungár
Nano May 2006


X-ray line profile analysis is shown to be a powerful tool to characterize the microstructure of nanocrystalline materials in terms of grain and subgrain size, dislocation structure and dislocation densities and planar defects, especially stacking faults and twin boundaries. It is shown that the X-ray method can provide valuable complementary information about the microstructure, especially when combined with transmission electron microscopy and differential scanning calorimetry.


Dislocation Density Twin Boundary Equal Channel Angular Pressing High Pressure Torsion Planar Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is grateful to the Hungarian National Science Foundation, OTKA T46990 and OTKA T43247, for supporting this work.


  1. 1.
    Hellmig RJ, Baik SC, Bowen JR, Estrin Y, Juul Jensen D, Kim HS, Seo MH, December 2003, In: Zehetbauer MJ, Valiev RZ (eds) Proc. 2nd Int. Conf. Nanomater. Severe Plastic Deformation: Fundamentals – Processing – Applications, Wien, Austria, J.Wiley VCH, Weinheim, 2004 p 420Google Scholar
  2. 2.
    Scherrer P (1918) Göttinger Nachrichten 2:98Google Scholar
  3. 3.
    Warren BE, Averbach BL (1950) J Appl Phys 21:595CrossRefGoogle Scholar
  4. 4.
    Warren BE, Averbach BL (1952) J Appl Phys 23:497CrossRefGoogle Scholar
  5. 5.
    Warren BE (1959) Prog Metal Phys 8:147CrossRefGoogle Scholar
  6. 6.
    Wilson AJC (1962) In: X-Ray Optics; the Diffraction of X-Rays by Finite and Imperfect Crystals, Methuen, LondonGoogle Scholar
  7. 7.
    Bertaut EF (1950) Acta Cryst 3:14CrossRefGoogle Scholar
  8. 8.
    Wilkens M Fundamental Aspects of Dislocation Theory, edited by J.A Simmons, R de Wit, R Bullough, Vol. II Nat Bur Stand (US) Spec. Publ. No. 317, Washington, DC. USA, 970 p 1195Google Scholar
  9. 9.
    Balogh L, Ribárik G, Ungár T (2006) J Appl Phys 100:023512CrossRefGoogle Scholar
  10. 10.
    Krill CE, Birringer R (1998) Phil Mag A 77:621Google Scholar
  11. 11.
    Langford JI Louër D (1996) Rep Prog Phys 59:131CrossRefGoogle Scholar
  12. 12.
    Ungár T, Borbély A, Goren-Muginstein G R, Bergerand S, Rosen A R (1999) Nanostructured Mater 11:103CrossRefGoogle Scholar
  13. 13.
    Langford JI, Louër D, Scardi P (2000) J Appl Cryst 33:964CrossRefGoogle Scholar
  14. 14.
    Valiev RZ, Kozlov EV, Ivanov Yu F, Lian J, Nazarov AA, Baudelet B (1994) Acta Met Mater 42:2467CrossRefGoogle Scholar
  15. 15.
    Terwilliger ChD, Chiang YM (1995) Acta Met Mater 43:319Google Scholar
  16. 16.
    Scardi P, Leoni M (2002) Acta Cryst A58:190Google Scholar
  17. 17.
    Hinds WC In: Aerosol technology. Properties, behavior and measurement of airbone particles, (Wiley, New York, 1982)Google Scholar
  18. 18.
    Ribárik G, Ungár T, Gubicza J (2001) J Appl Cryst 34:669CrossRefGoogle Scholar
  19. 19.
    Ungár T, Gubicza J, Ribárik G, Borbély A (2001) J Appl Cryst 34:298CrossRefGoogle Scholar
  20. 20.
    Ribárik G, Gubicza J, Ungár T (2004) Mat Sci Eng A387–389:343Google Scholar
  21. 21.
    Ungár T, Borbély A (1996) Appl Phys Lett 69:3173CrossRefGoogle Scholar
  22. 22.
    Ungár T, Tichy G (1999) Phys Stat Sol (a) 171:425CrossRefGoogle Scholar
  23. 23.
    Ungár T, Ott S, Sanders PG, Borbély A, Weertman JR (1998) Acta Mater 46:3693CrossRefGoogle Scholar
  24. 24.
    Mitra R, Ungár T, Morita T, Sanders PG, Weertman JR (1999) In: Chung YW, Dunand DC, Liaw PF and Olson GB (eds) Advanced Materials for the 21st Century, Warrendale TMS, USA, p 553Google Scholar
  25. 25.
    Mitra R, Ungár T, Weertman JR (2005) Trans Indian Inst Metals 58:1125–1132Google Scholar
  26. 26.
    Gubicza J, Balogh L, Hellmig RJ, Estrin Y, Ungár (2005) T Mat Sci Eng A 400–401:334–338CrossRefGoogle Scholar
  27. 27.
    Sanders PG (1996) Ph.D. Thesis, Northwestern University, Evanston, IL, USA 60208Google Scholar
  28. 28.
    Zhilyaev AP, Gubicza J, Nurislamova G, Révész Á, Suriñach S, Baró MD, Ungár T (2003) Phys Stat Sol (a) 198:263CrossRefGoogle Scholar
  29. 29.
    Gubicza J, Chinh NQ, Horita Z, Langdon TG (2004) Mater Sci Eng A 387–389:55Google Scholar
  30. 30.
    Zhu YT, Huang JY, Gubicza J, Ungár T, Wang YM, Ma E, Valiev RZ (2003) J Mat Res 18:1908Google Scholar
  31. 31.
    Bolmaro RE, Brokmeier HG, Signorelli JW, Fourtz A, Bertinetti MA (2004) In: Mittemeijer EJ, Scardi P (eds) Diffraction analysis of the microstructure of materials, Springer, Berlin, p 391Google Scholar
  32. 32.
    Ungár T, Tichy G, Gubicza J, Hellmig RJ (2005) J Powder Diffraction, 20:366CrossRefGoogle Scholar
  33. 33.
    Krivoglaz M A theory of X-ray and thermal neutron scattering by real crystals Berlin: Springer-Verlag; 1996Google Scholar
  34. 34.
    Groma I (1998) Phys Rev B 57:7535CrossRefGoogle Scholar
  35. 35.
    Klimanek P, Kuzel R Jr (1988) J Appl Cryst 21:9CrossRefGoogle Scholar
  36. 36.
    Kuzel R Jr, Klimanek P (1988) J Appl Cryst 21:363CrossRefGoogle Scholar
  37. 37.
    Kuzel R Jr, Klimanek P (1989) J Appl Cryst 22:299CrossRefGoogle Scholar
  38. 38.
    Thiele E, Klemm R, Hollang L, Holste C, Schell N, Natter H, Hempelmann R (2005) Mat Sci Eng A 390:42CrossRefGoogle Scholar
  39. 39.
    Caglioti G, Paoletti A, Ricci FP (1958) Nucl Instrum 3:223CrossRefGoogle Scholar
  40. 40.
    Ungár T, Gubicza J, Tichy G, Pantea C, Zerda TW (2005) Composites:Part A 36:431Google Scholar
  41. 41.
    Wilkens M (1970) Phys Stat Sol (a) 2:359CrossRefGoogle Scholar
  42. 42.
    Stokes AR, Wilson AJC (1944) Proc Cambridge Phys Soc 40:197Google Scholar
  43. 43.
    Stephens PW (1999) J Appl Cryst 32:281CrossRefGoogle Scholar
  44. 44.
    Steeds JW (1973) In introduction to the anisotropic elasticity theory of dislocations. Oxford, ClarendonGoogle Scholar
  45. 45.
    Popa NC (1998) J Appl Cryst 31:176CrossRefGoogle Scholar
  46. 46.
    Dragomir IC, Ungár T (2002) J Appl Cryst 35:556CrossRefGoogle Scholar
  47. 47.
    Ungár T, Dragomir I, Révész Á, Borbély A (1999) J Appl Cryst 32:992CrossRefGoogle Scholar
  48. 48.
    Dragomir IC, Ungár T (2002) Powder Diffr 17:104CrossRefGoogle Scholar
  49. 49.
    Cordier P, Ungár T, Zsoldos L, Tichy G (2004) Nature 428:837CrossRefGoogle Scholar
  50. 50.
    Nyilas K, Dupas C, Kruml T, Zsoldos L, Ungár T, Martin JL (2004) Mat Sci Eng A 387:25CrossRefGoogle Scholar
  51. 51.
    Gubicza J, Kassem M, Ribárik G, Ungár T (2004) Mat Sci Eng A 372:115CrossRefGoogle Scholar
  52. 52.
    Fátay D, Bastarash E, Nyilas K, Dobatkin S, Gubicza J, Ungár T (2003) Metallkd Z 94:7Google Scholar
  53. 53.
    Balogh L, Gubicza J, Hellmig RJ, Estrin Y, Ungár T (2006) Z Kristallography 23:381CrossRefGoogle Scholar
  54. 54.
    Gubicza J, Nam NH, Balogh L, Hellmig RJ, Stolyarov VV, Estrin Y, Ungár T (2004) J Alloy Compd 378:248CrossRefGoogle Scholar
  55. 55.
    Wang YM, Chen MW, Zhou FH, Ma E (2002) Nature 479:912CrossRefGoogle Scholar
  56. 56.
    Kuzel R, Cernansky M, Holy V, Kubena J, Simek D, Kub J (2004) In: Mittemeijer EJ, Scardi P (eds) Diffraction analysis of the microstructure of materials, Springer, Berlin, p 229Google Scholar
  57. 57.
    Meyers MA, Vöhringer O, Lubarda VA (2001) Acta Mater 49:4025CrossRefGoogle Scholar
  58. 58.
    Dragomir IC, Ungár T, Chen M, Ma E, Hemker KJ, Sheng H, Wang YM, Cheng X (2003) Science 300:1275CrossRefGoogle Scholar
  59. 59.
    Liao XZ, Huang JY, Zhu YT, Zhou F, Lavernia E (2003) J Philos Mag 83:3065CrossRefGoogle Scholar
  60. 60.
    Treacy MMJ, Newsam JM, Deem MW (1991) Proc Roy Soc London A 433:99CrossRefGoogle Scholar
  61. 61.
    Ungár T, Balogh L, Zhu Y T, Horita Z, Xu C, Langdon TG (2006) submitted to Mater Sci Eng AGoogle Scholar
  62. 62.
    Zhu YT, Liao XZ, Srinivasan SG, Zhao YH, Baskes MI, Zhou F, Lavernia E (2004) J Appl Phys Lett 85:5049CrossRefGoogle Scholar
  63. 63.
    Zhu YT, Liao XZ, Srinivasan SG, Lavernia EJ (2005) J Appl Pys 98:034319/1–8CrossRefGoogle Scholar
  64. 64.
    Zhao YH, Liao XZ, Zhu YT, Horita Z, Langdon TG (2005) Mater Sci Eng A410–411:188Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Materials PhysicsEötvös University BudapestBudapestHungary

Personalised recommendations