Skip to main content
Log in

Characterization of nanocrystalline materials by X-ray line profile analysis

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

X-ray line profile analysis is shown to be a powerful tool to characterize the microstructure of nanocrystalline materials in terms of grain and subgrain size, dislocation structure and dislocation densities and planar defects, especially stacking faults and twin boundaries. It is shown that the X-ray method can provide valuable complementary information about the microstructure, especially when combined with transmission electron microscopy and differential scanning calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hellmig RJ, Baik SC, Bowen JR, Estrin Y, Juul Jensen D, Kim HS, Seo MH, December 2003, In: Zehetbauer MJ, Valiev RZ (eds) Proc. 2nd Int. Conf. Nanomater. Severe Plastic Deformation: Fundamentals – Processing – Applications, Wien, Austria, J.Wiley VCH, Weinheim, 2004 p 420

  2. Scherrer P (1918) Göttinger Nachrichten 2:98

    Google Scholar 

  3. Warren BE, Averbach BL (1950) J Appl Phys 21:595

    Article  CAS  Google Scholar 

  4. Warren BE, Averbach BL (1952) J Appl Phys 23:497

    Article  CAS  Google Scholar 

  5. Warren BE (1959) Prog Metal Phys 8:147

    Article  CAS  Google Scholar 

  6. Wilson AJC (1962) In: X-Ray Optics; the Diffraction of X-Rays by Finite and Imperfect Crystals, Methuen, London

  7. Bertaut EF (1950) Acta Cryst 3:14

    Article  CAS  Google Scholar 

  8. Wilkens M Fundamental Aspects of Dislocation Theory, edited by J.A Simmons, R de Wit, R Bullough, Vol. II Nat Bur Stand (US) Spec. Publ. No. 317, Washington, DC. USA, 970 p 1195

  9. Balogh L, Ribárik G, Ungár T (2006) J Appl Phys 100:023512

    Article  CAS  Google Scholar 

  10. Krill CE, Birringer R (1998) Phil Mag A 77:621

    CAS  Google Scholar 

  11. Langford JI Louër D (1996) Rep Prog Phys 59:131

    Article  Google Scholar 

  12. Ungár T, Borbély A, Goren-Muginstein G R, Bergerand S, Rosen A R (1999) Nanostructured Mater 11:103

    Article  Google Scholar 

  13. Langford JI, Louër D, Scardi P (2000) J Appl Cryst 33:964

    Article  CAS  Google Scholar 

  14. Valiev RZ, Kozlov EV, Ivanov Yu F, Lian J, Nazarov AA, Baudelet B (1994) Acta Met Mater 42:2467

    Article  CAS  Google Scholar 

  15. Terwilliger ChD, Chiang YM (1995) Acta Met Mater 43:319

    CAS  Google Scholar 

  16. Scardi P, Leoni M (2002) Acta Cryst A58:190

    CAS  Google Scholar 

  17. Hinds WC In: Aerosol technology. Properties, behavior and measurement of airbone particles, (Wiley, New York, 1982)

    Google Scholar 

  18. Ribárik G, Ungár T, Gubicza J (2001) J Appl Cryst 34:669

    Article  Google Scholar 

  19. Ungár T, Gubicza J, Ribárik G, Borbély A (2001) J Appl Cryst 34:298

    Article  Google Scholar 

  20. Ribárik G, Gubicza J, Ungár T (2004) Mat Sci Eng A387–389:343

    Google Scholar 

  21. Ungár T, Borbély A (1996) Appl Phys Lett 69:3173

    Article  Google Scholar 

  22. Ungár T, Tichy G (1999) Phys Stat Sol (a) 171:425

    Article  Google Scholar 

  23. Ungár T, Ott S, Sanders PG, Borbély A, Weertman JR (1998) Acta Mater 46:3693

    Article  Google Scholar 

  24. Mitra R, Ungár T, Morita T, Sanders PG, Weertman JR (1999) In: Chung YW, Dunand DC, Liaw PF and Olson GB (eds) Advanced Materials for the 21st Century, Warrendale TMS, USA, p 553

  25. Mitra R, Ungár T, Weertman JR (2005) Trans Indian Inst Metals 58:1125–1132

    CAS  Google Scholar 

  26. Gubicza J, Balogh L, Hellmig RJ, Estrin Y, Ungár (2005) T Mat Sci Eng A 400–401:334–338

    Article  CAS  Google Scholar 

  27. Sanders PG (1996) Ph.D. Thesis, Northwestern University, Evanston, IL, USA 60208

  28. Zhilyaev AP, Gubicza J, Nurislamova G, Révész Á, Suriñach S, Baró MD, Ungár T (2003) Phys Stat Sol (a) 198:263

    Article  CAS  Google Scholar 

  29. Gubicza J, Chinh NQ, Horita Z, Langdon TG (2004) Mater Sci Eng A 387–389:55

    Google Scholar 

  30. Zhu YT, Huang JY, Gubicza J, Ungár T, Wang YM, Ma E, Valiev RZ (2003) J Mat Res 18:1908

    CAS  Google Scholar 

  31. Bolmaro RE, Brokmeier HG, Signorelli JW, Fourtz A, Bertinetti MA (2004) In: Mittemeijer EJ, Scardi P (eds) Diffraction analysis of the microstructure of materials, Springer, Berlin, p 391

  32. Ungár T, Tichy G, Gubicza J, Hellmig RJ (2005) J Powder Diffraction, 20:366

    Article  CAS  Google Scholar 

  33. Krivoglaz M A theory of X-ray and thermal neutron scattering by real crystals Berlin: Springer-Verlag; 1996

    Google Scholar 

  34. Groma I (1998) Phys Rev B 57:7535

    Article  CAS  Google Scholar 

  35. Klimanek P, Kuzel R Jr (1988) J Appl Cryst 21:9

    Article  Google Scholar 

  36. Kuzel R Jr, Klimanek P (1988) J Appl Cryst 21:363

    Article  Google Scholar 

  37. Kuzel R Jr, Klimanek P (1989) J Appl Cryst 22:299

    Article  CAS  Google Scholar 

  38. Thiele E, Klemm R, Hollang L, Holste C, Schell N, Natter H, Hempelmann R (2005) Mat Sci Eng A 390:42

    Article  CAS  Google Scholar 

  39. Caglioti G, Paoletti A, Ricci FP (1958) Nucl Instrum 3:223

    Article  CAS  Google Scholar 

  40. Ungár T, Gubicza J, Tichy G, Pantea C, Zerda TW (2005) Composites:Part A 36:431

    Google Scholar 

  41. Wilkens M (1970) Phys Stat Sol (a) 2:359

    Article  Google Scholar 

  42. Stokes AR, Wilson AJC (1944) Proc Cambridge Phys Soc 40:197

    CAS  Google Scholar 

  43. Stephens PW (1999) J Appl Cryst 32:281

    Article  CAS  Google Scholar 

  44. Steeds JW (1973) In introduction to the anisotropic elasticity theory of dislocations. Oxford, Clarendon

    Google Scholar 

  45. Popa NC (1998) J Appl Cryst 31:176

    Article  CAS  Google Scholar 

  46. Dragomir IC, Ungár T (2002) J Appl Cryst 35:556

    Article  CAS  Google Scholar 

  47. Ungár T, Dragomir I, Révész Á, Borbély A (1999) J Appl Cryst 32:992

    Article  Google Scholar 

  48. Dragomir IC, Ungár T (2002) Powder Diffr 17:104

    Article  CAS  Google Scholar 

  49. Cordier P, Ungár T, Zsoldos L, Tichy G (2004) Nature 428:837

    Article  CAS  Google Scholar 

  50. Nyilas K, Dupas C, Kruml T, Zsoldos L, Ungár T, Martin JL (2004) Mat Sci Eng A 387:25

    Article  CAS  Google Scholar 

  51. Gubicza J, Kassem M, Ribárik G, Ungár T (2004) Mat Sci Eng A 372:115

    Article  CAS  Google Scholar 

  52. Fátay D, Bastarash E, Nyilas K, Dobatkin S, Gubicza J, Ungár T (2003) Metallkd Z 94:7

    Google Scholar 

  53. Balogh L, Gubicza J, Hellmig RJ, Estrin Y, Ungár T (2006) Z Kristallography 23:381

    Article  Google Scholar 

  54. Gubicza J, Nam NH, Balogh L, Hellmig RJ, Stolyarov VV, Estrin Y, Ungár T (2004) J Alloy Compd 378:248

    Article  CAS  Google Scholar 

  55. Wang YM, Chen MW, Zhou FH, Ma E (2002) Nature 479:912

    Article  CAS  Google Scholar 

  56. Kuzel R, Cernansky M, Holy V, Kubena J, Simek D, Kub J (2004) In: Mittemeijer EJ, Scardi P (eds) Diffraction analysis of the microstructure of materials, Springer, Berlin, p 229

  57. Meyers MA, Vöhringer O, Lubarda VA (2001) Acta Mater 49:4025

    Article  CAS  Google Scholar 

  58. Dragomir IC, Ungár T, Chen M, Ma E, Hemker KJ, Sheng H, Wang YM, Cheng X (2003) Science 300:1275

    Article  CAS  Google Scholar 

  59. Liao XZ, Huang JY, Zhu YT, Zhou F, Lavernia E (2003) J Philos Mag 83:3065

    Article  CAS  Google Scholar 

  60. Treacy MMJ, Newsam JM, Deem MW (1991) Proc Roy Soc London A 433:99

    Article  Google Scholar 

  61. Ungár T, Balogh L, Zhu Y T, Horita Z, Xu C, Langdon TG (2006) submitted to Mater Sci Eng A

  62. Zhu YT, Liao XZ, Srinivasan SG, Zhao YH, Baskes MI, Zhou F, Lavernia E (2004) J Appl Phys Lett 85:5049

    Article  CAS  Google Scholar 

  63. Zhu YT, Liao XZ, Srinivasan SG, Lavernia EJ (2005) J Appl Pys 98:034319/1–8

    Article  CAS  Google Scholar 

  64. Zhao YH, Liao XZ, Zhu YT, Horita Z, Langdon TG (2005) Mater Sci Eng A410–411:188

    Google Scholar 

Download references

Acknowledgements

The author is grateful to the Hungarian National Science Foundation, OTKA T46990 and OTKA T43247, for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Ungár.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ungár, T. Characterization of nanocrystalline materials by X-ray line profile analysis. J Mater Sci 42, 1584–1593 (2007). https://doi.org/10.1007/s10853-006-0696-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0696-1

Keywords

Navigation