Journal of Materials Science

, Volume 42, Issue 12, pp 4233–4239 | Cite as

Cooling rate dependent as-cast microstructure and mechanical properties of Zr-based metallic glasses

  • M. Yan
  • J. ShenEmail author
  • J. F. Sun
  • J. Zou


In this article, wedge chill casting is used to provide a variation of the cooling rate for the study of cooling rate-dependent as-cast microstructure and mechanical properties of Zr-based metallic glasses with and without yttrium doping. In-situ formed crystalline phases and crystallization sequence are realized in the context of the cooling rate. Macro-hardness is studied via the Brinell ball indentation and the contact morphology is discussed on the basis of microstructure analysis.


Cool Rate Shear Band Metallic Glass Yttrium Oxide Energy Dispersive Spectrometer Analysis 



This work was supported by the Program for New Century Excellent Talents in University (China).


  1. 1.
    Klement W, Willens RH, Duwez P (1960) Nature 187:869CrossRefGoogle Scholar
  2. 2.
    Inoue A. (2000) Acta Mater 48:279CrossRefGoogle Scholar
  3. 3.
    Johnson WL (1999) MRS Bull 24:42CrossRefGoogle Scholar
  4. 4.
    Gebert A, Eckert J, Sculzt L (1998) Acta Mater 46:5475CrossRefGoogle Scholar
  5. 5.
    Xing LQ, Hufnagel TC, Eckert J, Löser W, Schultz L (2000) Appl Phys Lett 77:1970CrossRefGoogle Scholar
  6. 6.
    Hu X, Ng SC, Feng YP, Li Y (2001) Phy Rev B 64:172201CrossRefGoogle Scholar
  7. 7.
    Lin XH, Johnson WL (1995) J Appl Phys 78:1CrossRefGoogle Scholar
  8. 8.
    Pryds NH, Huang X (2000) Metal Mater Trans A 31:3155CrossRefGoogle Scholar
  9. 9.
    Xing LQ, Ochin P, Harmelin M, Faudot F, Bigot J, Chevalier JP (1996) Mater Sci Eng A 220:155CrossRefGoogle Scholar
  10. 10.
    Inoue A, Shinohara Y, Yokohama Y, Masumoto T (1995) Mater Trans JIM 36:1276CrossRefGoogle Scholar
  11. 11.
    Schuh CA, Nieh TG (2004) J Mater Res 19:46CrossRefGoogle Scholar
  12. 12.
    Tang CG, Li Y, Zeng KY (2004) Mater Sci Eng A 384:215CrossRefGoogle Scholar
  13. 13.
    Patnaik MNM, Narasimhan R, Ramamurty U (2004) Acta Mater 52:3335CrossRefGoogle Scholar
  14. 14.
    Shen J, Zou J, Ye L, Lu ZP, Xing DW, Yan M, Sun JF (2005) J Non-Cryst Solids 351:2519CrossRefGoogle Scholar
  15. 15.
    Liu CT, Chisholm MF, Miller MK (2002) Intermetallics 10:1105CrossRefGoogle Scholar
  16. 16.
    Yan M, Shen J, Zhang T, Zou J (2006) J Non-Cryst. Solids 352:3109CrossRefGoogle Scholar
  17. 17.
    Yan M, Zou J, Shen J J Alloys Compd. doi: 10.1016/j.jallcom.2006.06.034CrossRefGoogle Scholar
  18. 18.
    Zhang J, Wei YH, Qiu KQ, Zhang HF, Quan MX, Hu ZQ (2003) Mater Sci Eng A 357:386CrossRefGoogle Scholar
  19. 19.
    Spaepen F (1977) Acta Mater 25:407CrossRefGoogle Scholar
  20. 20.
    Steif PS, Spaepen F, Hutchinson JW (1982) Acta Mater 30:447CrossRefGoogle Scholar
  21. 21.
    Yan M, Sun JF, Shen J (2004) J Alloys Compd 381:86CrossRefGoogle Scholar
  22. 22.
    Field JS, Swain MV (1995) J Mater Res 10:101CrossRefGoogle Scholar
  23. 23.
    Choi-Yim H, Koster U, Busch R, Johnson WL (1999) Acta Mater 47: 2455CrossRefGoogle Scholar
  24. 24.
    Fan C, Ott RT, Hufnagel TC (2002) Appl Phys Lett 81:1020CrossRefGoogle Scholar
  25. 25.
    He G, Loser W, Eckert J (2003) Acta Mater 51:5223CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.School Engineering and Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneAustralia

Personalised recommendations