Journal of Materials Science

, Volume 42, Issue 11, pp 3699–3707 | Cite as

Impact properties of glass/plant fibre hybrid laminates

  • Carlo Santulli


The use of plants fibre reinforced composites has continuously increased during recent years. Their low density, higher environmental friendliness, and reduced cost proved particularly attractive for low-tech applications e.g., in building, automotive and leisure time industry. However, a major limitation to the use of these materials in structural components is unsatisfactory impact performance. An intermediate approach, the production of glass/plant fibre hybrid laminates, has also been explored, trying to obtain materials with sufficient impact properties, whilst retaining a reduced cost and a substantial environmental gain. A survey is given on some aspects, crucial for the use of glass/plant fibre hybrid laminates in structural components: performance of hybrids when subjected to impact testing; the effect of laminate configuration, manufacturing procedure and fibre treatment on impact properties of the composite. Finally, indications are provided for a suitable selection of plant fibres with minimal extraction damage and sufficient toughness, for introduction in an impact-resistant glass/plant fibre hybrid laminate.


Maleic Anhydride Impact Property Flax Fibre Jute Fibre Interfacial Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abrate S (1998) Impact on composite structures, Cambridge University Press, ISBN 0 521 47389 6Google Scholar
  2. 2.
    Schrauwen B, Bertens P, Peijs T (2002) Polym Polym Compos 10:259Google Scholar
  3. 3.
    Ji B, Gao H (2004) J Mech Phys Solids 52:1963MATHCrossRefGoogle Scholar
  4. 4.
    McLaughlin EC (1980) J Mater Sci 15:886CrossRefGoogle Scholar
  5. 5.
    Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) J Mater Sci 36:2107CrossRefGoogle Scholar
  6. 6.
    Joseph K, Tolědo Filho RD, James B, Thomas S, Hecker de Carvalho L (1999) Revista Brasileira de Engenharia Agricola e Ambiental 3:367Google Scholar
  7. 7.
    Santulli C, Janssen M, Jeronimidis G (2005) J Mater Sci 40:3581CrossRefGoogle Scholar
  8. 8.
    Zafeiropoulos NE, Baillie CA, Hodgkinson JM (2002) Compos Part A 33:1185CrossRefGoogle Scholar
  9. 9.
    Hughes M, Sébe G, Hague J, Hill C, Spear M, Mott L (2000) Compos Interface 7:13CrossRefGoogle Scholar
  10. 10.
    Eichhorn SJ, Young RJ (2004) Compos Sci Technol 64:767CrossRefGoogle Scholar
  11. 11.
    Gong M, Smith I (2004) Wood Sci Technol 37:435CrossRefGoogle Scholar
  12. 12.
    Lamy B, Pomel C (2002) J Mater Sci Lett 21:1211CrossRefGoogle Scholar
  13. 13.
    Joffe R, Andersons J, Wallstrom L (2003) Compos Part A 34:603CrossRefGoogle Scholar
  14. 14.
    Hariharan ABA, Khalil HPSA (2005) J Compos Mater 39:663CrossRefGoogle Scholar
  15. 15.
    Marom G, Fisher S, Tuler FR, Wagner HD (1978) J Mater Sci 13:1419CrossRefGoogle Scholar
  16. 16.
    Pavithran C, Mukherjee PS, Brahmakumar M, Damodaran AD (1991) J Mater Sci 26:455CrossRefGoogle Scholar
  17. 17.
    Idicula M, Malhotra SK, Joseph K, Thomas S (2005) Compos Sci Technol 65:1077CrossRefGoogle Scholar
  18. 18.
    John K, Naidu SV (2004a) J Reinf Plast Comp 23:1253Google Scholar
  19. 19.
    John K, Naidu SV (2004b) J Reinf Plast Comp 23:1601CrossRefGoogle Scholar
  20. 20.
    John K, Naidu SV (2004c) J Reinf Plast Comp 23:1815CrossRefGoogle Scholar
  21. 21.
    Mohan RK, Shridhar MK, Rao RMVGK (1983) J Mater Sci Lett 2:99CrossRefGoogle Scholar
  22. 22.
    Dieu TV, Liem NT, Mai TT, Tung NH (2004) JSME Int J A 47:570CrossRefGoogle Scholar
  23. 23.
    Pavithran C, Mukherjee PS, Brahmakumar M (1991) J Mater Sci Lett 10:91CrossRefGoogle Scholar
  24. 24.
    Goutianos S, Peijs T (2003) Adv Compos Lett 12:237Google Scholar
  25. 25.
    Varma IK, Krishnan SRA, Krishnamoorthy S (1989) Composites 20:383CrossRefGoogle Scholar
  26. 26.
    Clark RA, Ansell MP (1986) J Mater Sci 31:269CrossRefGoogle Scholar
  27. 27.
    Kalaprasad G, Mathew G, Pavithran C, Thomas S (2003) J Appl Polym Sci 89:432CrossRefGoogle Scholar
  28. 28.
    Benevolenski OI, Karger-Kocsis J, Mieck KP, Reussmann T (2000) J Thermoplast Compos Mater 13:481CrossRefGoogle Scholar
  29. 29.
    Wambua P, Ivens J, Verpoest I (2003) Compos Sci Technol 63:1259CrossRefGoogle Scholar
  30. 30.
    Santulli C (2006) J Mater Sci 41:1255CrossRefGoogle Scholar
  31. 31.
    Angelini LG, Lazzeri A, Levita G, Fontanelli D, Bossi CR (2000) Indus Crop Prod 11:145CrossRefGoogle Scholar
  32. 32.
    Agarwal R, Saxena NS, Sharma KB, Thomas S, Pothan LA (2003) Indian J Pure Appl Phys 41:448Google Scholar
  33. 33.
    Ray D, Sarkar BK, Rana AK, Bose NR (2001) B Mater Sci 24:129Google Scholar
  34. 34.
    Rowell RM (2004) Mol Cryst Liq Cryst 418:881CrossRefGoogle Scholar
  35. 35.
    Ghosh P, Dev D, Samanta AK (1998) J Appl Polym Sci 68:1139CrossRefGoogle Scholar
  36. 36.
    Vilaseca F, Corrales F, Llop ME, Pelach MA, Mutje P (2005) Compos Interface 12:725CrossRefGoogle Scholar
  37. 37.
    Mieck KP, Nechwatal A, Knobelsdorf C (1995) Angewandte Makromolekulare Chemie 224:73CrossRefGoogle Scholar
  38. 38.
    Gassan J, Bledzki AK (1997) Compos Part A 28:1001CrossRefGoogle Scholar
  39. 39.
    Gassan J, Gutowski VS (2000) Compos Sci Technol 60:2857CrossRefGoogle Scholar
  40. 40.
    Teramoto N, Urata K, Ozawa K, Shibata M (2004) Polym Degrad Stabil 86:401CrossRefGoogle Scholar
  41. 41.
    Rong MZ, Zhang MQ, Liu Y, Yan HM, Yang CG, Zeng HM (2002) Polym Compos 23:182CrossRefGoogle Scholar
  42. 42.
    Yuan XW, Jayaraman K, Bhattacharyya D (2004) J Adhes Sci Technol 18:1027CrossRefGoogle Scholar
  43. 43.
    Thwe MM, Liao K (2002) Plasti Rubber Compos 31:422CrossRefGoogle Scholar
  44. 44.
    Alvarez VA, Vázquez A (2005) Compos Part A, Online, DecemberGoogle Scholar
  45. 45.
    Biagiotti J, Puglia D, Torre L, Kenny JM (2004) Polym Compos 25:470CrossRefGoogle Scholar
  46. 46.
    Arbelaiz A, Fernandez B, Cantero G, Llano-Ponte R, Valea A, Mondragon I (2005) Compos Part A 36:1637CrossRefGoogle Scholar
  47. 47.
    Foulk JA, Chao WY, Akin DE, Dodd RB, Layton PA (2004) J Polym Environ 12:165CrossRefGoogle Scholar
  48. 48.
    de Medeiros ES, Agnelli JAM, Joseph K, de Carvalho LH, Mattoso LHC (2005) Polym Compos 26:1CrossRefGoogle Scholar
  49. 49.
    Jacob M, Thomas S, Varughese KT (2004) Appl Polym Sci 93:2305CrossRefGoogle Scholar
  50. 50.
    Mwaikambo LY, Bisanda ETN (1999) Polymer Testing 18:181CrossRefGoogle Scholar
  51. 51.
    Junior CZP, de Carvalho LH, Fonseca VM, Monteiro SN, d’Almeida JRM (2004) Polym Test 23:131CrossRefGoogle Scholar
  52. 52.
    Sreekala MS, Kumaran MG, Joseph S, Jacob M, Thomas S (2000) Appl Compos Mater 7:295CrossRefGoogle Scholar
  53. 53.
    Velmurugan R, Manikandan V (2005) Indian J Eng Mater Sci 12:563Google Scholar
  54. 54.
    Kalaprasad G, Francis B, Thomas S, Kumar CR, Pavithran C, Groeninckx G, Thomas S (2004) Polym Int 53:1624CrossRefGoogle Scholar
  55. 55.
    Kalaprasad G, Pradeep P, Mathew G, Pavithran C, Thomas S (2000) Compos Sci Technol 60:2967CrossRefGoogle Scholar
  56. 56.
    Joseph K, Thomas S, Pavithran C (1996) Polymer 37:5139CrossRefGoogle Scholar
  57. 57.
    Mishra S, Mohanty AK, Drzal LT, Misra M, Parija S, Nayak SK, Tripathy SS (2003) Compos Sci Technol 63:1377CrossRefGoogle Scholar
  58. 58.
    Li HJ, Sain MM (2003) Polym-Plast Technol Eng 42:853CrossRefGoogle Scholar
  59. 59.
    Morye SS, Wool RP (2005) Polym Compos 26:407CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Construction Management and EngineeringUniversity of Reading – Centre for BiomimeticsReadingUK
  2. 2.Dipartimento di Ingegneria ElettricaUniversità di Roma - La SapienzaRomaItaly

Personalised recommendations