Skip to main content
Log in

Interfacial stress transfer of fiber pullout for carbon nanotubes with a composite coating

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An analytical approach has been established to evaluate the interfacial stress transfer characteristics of single- and multi-walled carbon nanotubes (CNTs) with composite coatings by means of fiber pullout model. According to the present model, the effects of several parameters such as coating thickness, layer numbers and dimension of CNTs on interfacial stress transfers were investigated and analyzed. The results suggested that the maximum interfacial shear stress occurred at the pullout end of CNTs and decreased with increasing coating thickness as well as CNT wall thickness (layer numbers). Moreover, the distribution of the interfacial shear and coating axial stress along the CNT length was found to be largely affected by the friction coefficient in the interface between the CNT and the coating layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Nature 381:678

    Article  CAS  Google Scholar 

  2. Schadler LS, Giannaris SC, Ajayan PM (1998) App Phys Lett 73:3842

    Article  CAS  Google Scholar 

  3. Wong EW, Sheehan PE, Lieber CM (1997) Science 277:1971

    Article  CAS  Google Scholar 

  4. Vaccarini L, Goze C, Henrard L, Hernandez E, Bernier P, Rubio A (2000) Carbon 38:1681

    Article  CAS  Google Scholar 

  5. Lau KT, Hui D (2002) Comp Pt B 33:263

    Article  Google Scholar 

  6. Thostenson ET, Ren Z, Chou TW (2001) Comp Sci Tech 61:1899

    Article  CAS  Google Scholar 

  7. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787

    Article  CAS  Google Scholar 

  8. Chen WX, Tu JP, Wang LY, Gan HY, Xu ZD, Zhang XB (2003) Carbon 41:215

    Article  CAS  Google Scholar 

  9. Chen WX, Tu JP, Gan HY, Xu ZD, Wang QG, Lee JY, Liu ZL, Zhang XB (2002) Surf Coat Tech 160:68

    Article  CAS  Google Scholar 

  10. Chen WX, Tu JP, Xu ZD, Chen WL, Zhang XB, Cheng DH (2003) Mater Lett 57:1256

    Article  CAS  Google Scholar 

  11. Seeger T, Redlich PH (2001) Chem Phys Lett 339:41

    Article  CAS  Google Scholar 

  12. Han WQ, Zettl A (2004) Nano Lett 3:681

    Article  Google Scholar 

  13. Zhao L, Gao L (2004) Carbon 42:1858

    Article  CAS  Google Scholar 

  14. Shi D, Lian J, He P, Wang LM, Ooij WJv, Schulz M, Mast DB (2002) App Phys Lett 81:5216

    Article  CAS  Google Scholar 

  15. Shi D, Lian J, He P, Wang LM, Xia F, Yang L, Schulz MJ, Mast DB (2003) App Phys Lett 83:5301

    Article  CAS  Google Scholar 

  16. Patil A, Sippel J, Martin GW, Rinzler AG (2004) Nano Lett 4:304

    Article  Google Scholar 

  17. Hsueh CH (1988) J Mater Sci Lett 7:497

    Article  Google Scholar 

  18. Lau KT (2003) Chem Phys Lett 370:399

    Article  CAS  Google Scholar 

  19. Zhang YC, Wang X (2005) Inter J Solid Stru 42:5399

    Article  CAS  Google Scholar 

  20. Timoshenko SP, Goodier JN (1951) Theory of elasticity. McGraw-Hill, New York

    Google Scholar 

  21. Xiao KQ, Zhang LC (2004) J Mater Sci 39:4481

    Article  CAS  Google Scholar 

  22. Girifalco LA, Lad RA (1956) J Chem Phys 25:693

    Article  CAS  Google Scholar 

  23. Ru CQ (2000) Phys Rev B 62:16962

    Article  CAS  Google Scholar 

  24. Lau KT, Gu C, Gao GH, Ling HY, Reid SR (2004) Carbon 42:423

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the CLUSTER of Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Natsuki.

Appendix A

Appendix A

For = 2, the solution of Eqs (7)–(10) gives

$$ \Delta r_1 = \frac{{q\left( {{C \mathord{\left/ {\vphantom {C {r_2^2 }}} \right. \kern-\nulldelimiterspace} {r_2^2 }} + c_0 } \right) + \left[ {\frac{\nu } {{r_1 }}\left( {{C \mathord{\left/ {\vphantom {C {r_2^2 }}} \right. \kern-\nulldelimiterspace} {r_2^2 }} + c_0 } \right) + \frac{{c_0 \nu }} {{r_2 }}} \right]\;T_z }} {{\left( {{C \mathord{\left/ {\vphantom {C {r_1^2 }}} \right. \kern-\nulldelimiterspace} {r_1^2 }} + c_0 } \right)\,\left( {{C \mathord{\left/ {\vphantom {C {r_2^2 }}} \right. \kern-\nulldelimiterspace} {r_2^2 }} + c_0 } \right) - c_0^2 }} $$
(A1)

Substituting Eq. (A1) into Eq. (11), we have

$$ f_1 = - \frac{{\left[ {\left( {{C \mathord{\left/ {\vphantom {C {r_2^2 }}} \right. \kern-\nulldelimiterspace} {r_2^2 }} + c_0 } \right)\frac{{\nu _f }} {{\,\phi \,r_1^2 }} + \frac{{c_0 \nu _f }} {{\phi \,r_1 r_2 }}} \right]}} {{\left( {{C \mathord{\left/ {\vphantom {C {r_1^2 }}} \right. \kern-\nulldelimiterspace} {r_1^2 }} + c_0 } \right)\,\left( {{C \mathord{\left/ {\vphantom {C {r_2^2 }}} \right. \kern-\nulldelimiterspace} {r_2^2 }} + c_0 } \right) - c_0^2 }} $$
(A2)
$$ f_2 = - \frac{{\nu _m }} {{\phi \,E_m }} $$
(A3)

and

$$ \phi = \left( {\frac{{{{\left( {1 + n^2 } \right)} \mathord{\left/ {\vphantom {{\left( {1 + n^2 } \right)} {\left( {1 - n^2 } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 - n^2 } \right)}} + \nu _m }} {{E_m }} + \frac{{{{\left( {{C \mathord{\left/ {\vphantom {C {r_2^2 }}} \right. \kern-\nulldelimiterspace} {r_2^2 }} + c_0 } \right)} \mathord{\left/ {\vphantom {{\left( {{C \mathord{\left/ {\vphantom {C {r_2^2 }}} \right. \kern-\nulldelimiterspace} {r_2^2 }} + c_0 } \right)} {r_1 }}} \right. \kern-\nulldelimiterspace} {r_1 }}}} {{\left( {{C \mathord{\left/ {\vphantom {C {r_1^2 }}} \right. \kern-\nulldelimiterspace} {r_1^2 }} + c_0 } \right)\,\left( {{C \mathord{\left/ {\vphantom {C {r_2^2 }}} \right. \kern-\nulldelimiterspace} {r_2^2 }} + c_0 } \right) - c_0^2 }}} \right) $$
(A3)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natsuki, T., Wang, F., Ni, Q.Q. et al. Interfacial stress transfer of fiber pullout for carbon nanotubes with a composite coating. J Mater Sci 42, 4191–4196 (2007). https://doi.org/10.1007/s10853-006-0641-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0641-3

Keywords

Navigation