Journal of Materials Science

, Volume 42, Issue 12, pp 4191–4196 | Cite as

Interfacial stress transfer of fiber pullout for carbon nanotubes with a composite coating

  • Toshiaki NatsukiEmail author
  • Feng Wang
  • Q. Q. Ni
  • Morinobu Endo


An analytical approach has been established to evaluate the interfacial stress transfer characteristics of single- and multi-walled carbon nanotubes (CNTs) with composite coatings by means of fiber pullout model. According to the present model, the effects of several parameters such as coating thickness, layer numbers and dimension of CNTs on interfacial stress transfers were investigated and analyzed. The results suggested that the maximum interfacial shear stress occurred at the pullout end of CNTs and decreased with increasing coating thickness as well as CNT wall thickness (layer numbers). Moreover, the distribution of the interfacial shear and coating axial stress along the CNT length was found to be largely affected by the friction coefficient in the interface between the CNT and the coating layer.


Friction Coefficient Coating Thickness Composite Coating Stress Transfer Interfacial Shear Stress 



This work was supported by the CLUSTER of Ministry of Education, Culture, Sports, Science and Technology, Japan.


  1. 1.
    Treacy MMJ, Ebbesen TW, Gibson JM (1996) Nature 381:678CrossRefGoogle Scholar
  2. 2.
    Schadler LS, Giannaris SC, Ajayan PM (1998) App Phys Lett 73:3842CrossRefGoogle Scholar
  3. 3.
    Wong EW, Sheehan PE, Lieber CM (1997) Science 277:1971CrossRefGoogle Scholar
  4. 4.
    Vaccarini L, Goze C, Henrard L, Hernandez E, Bernier P, Rubio A (2000) Carbon 38:1681CrossRefGoogle Scholar
  5. 5.
    Lau KT, Hui D (2002) Comp Pt B 33:263CrossRefGoogle Scholar
  6. 6.
    Thostenson ET, Ren Z, Chou TW (2001) Comp Sci Tech 61:1899CrossRefGoogle Scholar
  7. 7.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787CrossRefGoogle Scholar
  8. 8.
    Chen WX, Tu JP, Wang LY, Gan HY, Xu ZD, Zhang XB (2003) Carbon 41:215CrossRefGoogle Scholar
  9. 9.
    Chen WX, Tu JP, Gan HY, Xu ZD, Wang QG, Lee JY, Liu ZL, Zhang XB (2002) Surf Coat Tech 160:68CrossRefGoogle Scholar
  10. 10.
    Chen WX, Tu JP, Xu ZD, Chen WL, Zhang XB, Cheng DH (2003) Mater Lett 57:1256CrossRefGoogle Scholar
  11. 11.
    Seeger T, Redlich PH (2001) Chem Phys Lett 339:41CrossRefGoogle Scholar
  12. 12.
    Han WQ, Zettl A (2004) Nano Lett 3:681CrossRefGoogle Scholar
  13. 13.
    Zhao L, Gao L (2004) Carbon 42:1858CrossRefGoogle Scholar
  14. 14.
    Shi D, Lian J, He P, Wang LM, Ooij WJv, Schulz M, Mast DB (2002) App Phys Lett 81:5216CrossRefGoogle Scholar
  15. 15.
    Shi D, Lian J, He P, Wang LM, Xia F, Yang L, Schulz MJ, Mast DB (2003) App Phys Lett 83:5301CrossRefGoogle Scholar
  16. 16.
    Patil A, Sippel J, Martin GW, Rinzler AG (2004) Nano Lett 4:304CrossRefGoogle Scholar
  17. 17.
    Hsueh CH (1988) J Mater Sci Lett 7:497CrossRefGoogle Scholar
  18. 18.
    Lau KT (2003) Chem Phys Lett 370:399CrossRefGoogle Scholar
  19. 19.
    Zhang YC, Wang X (2005) Inter J Solid Stru 42:5399CrossRefGoogle Scholar
  20. 20.
    Timoshenko SP, Goodier JN (1951) Theory of elasticity. McGraw-Hill, New YorkGoogle Scholar
  21. 21.
    Xiao KQ, Zhang LC (2004) J Mater Sci 39:4481CrossRefGoogle Scholar
  22. 22.
    Girifalco LA, Lad RA (1956) J Chem Phys 25:693CrossRefGoogle Scholar
  23. 23.
    Ru CQ (2000) Phys Rev B 62:16962CrossRefGoogle Scholar
  24. 24.
    Lau KT, Gu C, Gao GH, Ling HY, Reid SR (2004) Carbon 42:423CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Toshiaki Natsuki
    • 1
    Email author
  • Feng Wang
    • 2
  • Q. Q. Ni
    • 1
  • Morinobu Endo
    • 2
  1. 1.Faculty of Textile Science & TechnologyShinshu UniversityUeda-shiJapan
  2. 2.Faculty of EngineeringShinshu UniversityNagano-shiJapan

Personalised recommendations