Skip to main content
Log in

The effect of microstructure on the permeability of metallic foams

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pressure drop was measured across complex and simple structure metallic foams at different velocity ranges using air as working fluid. Darcian and non-Darcian permeability parameters, K and C, were determined by fitting experimental data with widely accepted quadratic model of Hazen-Dupuit-Darcy. Generally, the experimental results are in good agreement with the model. The differences in K and C values between the two types of metallic foams are due to the different microstructure. For the simple structure specimens, permeability K increased whereas non-Darcian permeability C decreased with increasing pore diameter. The effect of pore size on the permeability of complex structure metallic foams seems to be opposite to that observed with the simple structure specimens and to results reported by other researchers on other porous medium. This discrepancy mainly stems from the differences in window concentration in addition to some heterogeneity in the foam that impeded the gas flow on one side of the specimens. The difference in pressure drop observed in the different metallic foams is due to combined effect of K and C. However, for simple structure foams, K and C could be predicted by Ergun-like model using appropriate values for the empirical constants. The permeability K is significantly affected by pore size and porosity. The quadratic term of Hazen-Dupuit-Darcy equation is mainly due to the inertia of the flow and partially to the drag exerted by the microstructure of the metallic foam. For both foams, as the porosity increases, pressure drop decreases and permeability, K, increases. The introduction of the open cross sectional area term enabled better understanding of the permeability of metallic foams with intricate morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Lage JL (1998) In: Ingham BD, Pop I (eds) Transport phenomena in porous media. pp 1–30

  2. Ward JC (1964) ASCE J Hydraulics Division 90(HY5):1

    Google Scholar 

  3. Beavers GS, Sparrow EM, Rodenz DE (1973) J Appl Mech 40(3):655

    Article  CAS  Google Scholar 

  4. Antohe BV, Lage JL, Price DC, Weber RM (1997) J Fluids Eng 119(2):405

    Article  Google Scholar 

  5. Davis PA, Olague NE, Goodrich MT (1992) Adv Water Resour 15:175

    Article  Google Scholar 

  6. Boomsma K, Poulikakos D (2002) J Fluids Eng 124(1):263

    Article  CAS  Google Scholar 

  7. Scheidegger AE (1974) The physics of flow through porous media. 3rd edn., University of Toronto Press, ISBN: 0-8020-1849-1

  8. Diedericks GPJ, Du Plessis JP (1997) Math Eng Industry 6(3):133

    Google Scholar 

  9. Beckermann C, Viskanta R (1987) Int J Heat Mass Transfer 30(7):1547

    Article  CAS  Google Scholar 

  10. Tadrist L, Miscevic M (2004) Exp Thermal Fluid Sci 28(2):193

    Article  CAS  Google Scholar 

  11. Paek JW, Kang BH, Kim SY, Hyun JM (2000) Int J Thermophys 21(2):453

    Article  CAS  Google Scholar 

  12. Innocentini DM, Salvini Vania (1999) Mater Res (Sao Carlos, Brazil) 2(4):283

    Article  CAS  Google Scholar 

  13. Innocentini DM, Victor C (2001) J Am Ceramic Soc 84(5):941

    Article  CAS  Google Scholar 

  14. Bhattacharya A, Mahajan RL (2002) Int J Heat Mass Transfer 45(5):1017

    Article  CAS  Google Scholar 

  15. Du Plessis P (1994) Chem Eng Sci 49(21):3545

    Article  CAS  Google Scholar 

  16. Fourie JG, Du Plessis P (2002) Chem Eng Sci 57(14):2781

    Article  CAS  Google Scholar 

  17. Boomsma K, Poulikakos D, Ventikos Y (2003) Int J Heat Fluid Flow 24(6):825

    Article  Google Scholar 

  18. Despois JF, Mortensen A (2005) Acta Materialia 53(5):1381

    Article  CAS  Google Scholar 

  19. Fand RM, Kim BYK, Lam ACC, Phan RT (1987) ASME J Fluids Eng 109(3):268

    Article  CAS  Google Scholar 

  20. Innocentini DM, Salvini VR, Pandolfelli VC, Coury JR (1999) Am Ceramic Soc Bull 78(9):78

    CAS  Google Scholar 

  21. Innocentini DM, Antunes WL, Baumgartner JB, Seville JPK, Coury JR (1999) Mater Sci Forum 299–300(5):19

    Google Scholar 

  22. Rumer RR, Drinker P (1966) J Hydraulic Div., Am Soc Civil Engineers 89(6):193

    Google Scholar 

  23. Banhart J, Baumeister J (1998) J Mater Sci 33(6):1431

    Article  CAS  Google Scholar 

  24. ReceMat International, “RECEMAT® metal foam: extremely porous material”, https://doi.org/www.recemat.com/en/, on 28th December, 2005

  25. Gauthier M, Lefebvre L, Thomas Y, Bureau M (2004) Mater Manufact Process 19(5):793

    Article  CAS  Google Scholar 

  26. Dukhan N, Alvarez A, (2004) In: Proceedings of the 2004 ASME international mechanical engineering congress and exposition, Anaheim, California USA, November 13–20 pp 595–601

Download references

Acknowledgement

The authors gratefully acknowledge the financial support received from NSERC and NATEQ. The authors would also like to thank NRC-IMI, Boucherville, Quebec, Canada and RECEMAT International, Netherlands for providing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoun Medraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medraj, M., Baril, E., Loya, V. et al. The effect of microstructure on the permeability of metallic foams. J Mater Sci 42, 4372–4383 (2007). https://doi.org/10.1007/s10853-006-0602-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0602-x

Keywords

Navigation