Advertisement

Journal of Materials Science

, Volume 41, Issue 24, pp 8109–8114 | Cite as

Preparation of YBa2Cu3O7-x superconducting thick films by the electrophoretic deposition method

  • Laurent Dusoulier
  • Samuel Denis
  • Philippe Vanderbemden
  • Michel Dirickx
  • Marcel Ausloos
  • Rudi Cloots
  • Bénédicte Vertruyen
Article

Abstract

YBa2Cu3O7-x thick films have been realised by the Electrophoretic Deposition method (EPD). The influence of several parameters (powder and iodine concentrations in the suspension, applied voltage and deposition time) on the EPD process has been studied by measuring the conductivity of the suspension and the amount of YBa2Cu3O7-x particles deposited on the electrode. Superconducting coatings onto silver substrates have been produced by a multilayer process during different deposition times. The highest critical current density value of these coatings measured by the four-point probe method is about 10A/cm2 (77 K), in a suitable range for magnetic shielding applications.

Keywords

Deposition Time Critical Current Density Superconducting Property Iodine Content YBCO Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

BV is grateful to the Fonds National de la Recherche Scientifique (Belgium) for a postdoctoral researcher fellowship. The authors thank the Center for Applied Microscopy (CATμ) for microscopy analyses.

References

  1. 1.
    Pavese F, Magnetic shielding in “Handbook of applied superconductivity”, Seeber B, editor, IoP publishing (1998) 1461–1483Google Scholar
  2. 2.
    Müller R, Fuchs G, Grahl A, Köhler A (1993) Supercond Sci Technol 6:225CrossRefGoogle Scholar
  3. 3.
    Niculescu H, Schmidmeier R, Topolski B, Gielisse PJ (1994) Phys C 229:105CrossRefGoogle Scholar
  4. 4.
    Sarkar P, Nicholson PS (1996) J Am Ceram Soc 79(8):1987CrossRefGoogle Scholar
  5. 5.
    Zhitomirsky I (2002) Adv Coll Inter Sci 97:279CrossRefGoogle Scholar
  6. 6.
    Van der Biest O, Vandeperre L (1999) Annu Rev Mater Sci 29:327CrossRefGoogle Scholar
  7. 7.
    Ondoño-Castillo S, Casañ-Pastor N (1996) Phys C 268:317CrossRefGoogle Scholar
  8. 8.
    Koura N, Tsukamoto T, Shoji H, Hotta T (1995) Jpn J Appl Phys 34:1643CrossRefGoogle Scholar
  9. 9.
    Soh D, Shan Y, Park J, Li Y, Cho Y (2000) Phys C 337:44CrossRefGoogle Scholar
  10. 10.
    Hamaker HC, Verwey EJW (1940) Trans Farad Soc 36:180CrossRefGoogle Scholar
  11. 11.
    Chen F, Liu M (2001) J Eur Ceram Soc 21:127CrossRefGoogle Scholar
  12. 12.
    Ferrari B, Moreno R (1997) J Eur Ceram Soc 17:549CrossRefGoogle Scholar
  13. 13.
    Wang C, Ma J, Cheng W, Zhang R (2002) Mater Lett 57:99CrossRefGoogle Scholar
  14. 14.
    Hein M, Mahner E, Müller G, Piel H, Ponto L, Becks M, Klein U, Peiniger M (1989) Phys C 162–164:111CrossRefGoogle Scholar
  15. 15.
    Kawachi M, Sato N, Noto K, Yoshizawa M (2002) Phys C 372–376:802CrossRefGoogle Scholar
  16. 16.
    MacManus JL-Driscoll, Bravman JC, Beyers RB (1995) Phys C 241:401CrossRefGoogle Scholar
  17. 17.
    Bhattacharya D, Roy SN, Basu RN, Das Sharma A, Maiti HS (1993) Mater Lett 16:337CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Laurent Dusoulier
    • 1
    • 2
  • Samuel Denis
    • 1
    • 2
  • Philippe Vanderbemden
    • 1
    • 2
  • Michel Dirickx
    • 1
    • 2
  • Marcel Ausloos
    • 1
    • 2
  • Rudi Cloots
    • 1
    • 2
  • Bénédicte Vertruyen
    • 1
    • 2
  1. 1.University of LiegeLiegeBelgium
  2. 2.Royal Military AcademyBrusselsBelgium

Personalised recommendations