Skip to main content

Advertisement

Log in

Hydriding properties of the nanocomposite 85 wt.% Mg–15 wt.% Mg2Ni0.8Co0.2 obtained by ball milling

  • Size-Dependent Effects
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hydrogen sorption properties of the nanocomposite 85 wt.% Mg–15 wt.% Mg2Ni0.8Co0.2 obtained by mechanical alloying in inert atmosphere were investigated. Absorption measurements were performed under a hydrogen pressure P = 1 MPa at temperartures ranging from 373 to 573 K, while desorption studies proceeded at P = 0.15 MPa and temperatures of 573 and 553 K. The addition of the intermetallic compound Mg2Ni0.8Co00.2 was shown to improve the hydriding kinetics of magnesium. The composite exhibited a high hydrogen capacity which did not decrease even after a large number of absorption–desorption cycles. Comparison of the hydriding kinetics of the intermetallic compounds Mg2Ni and Mg2Ni0.8Co0.2 indicated facilitation of the process by the presence of cobalt in the alloy. Magnetic measurement data on Mg2Ni0.8Co0.2 showed formation of superparamagnetic precipitations of nickel and cobalt playing the role of active centres for dissociative chemisorption of hydrogen. The behaviour of the composite was explained by the catalytic effect of the intermetallic Mg2Ni0.8Co00.2, the existence of Ni and Co clusters on the surface and the process of mechanical alloying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ivanov EYu, Konstanchuk IG, Stepanov AA, Boldyrev VV (1986) Dokl Akad Nauk SSSR 286:385

    CAS  Google Scholar 

  2. Bobet J-L, Akiba E, Darriet B (2001) Int J Hydrogen Energy 26:493

    Article  CAS  Google Scholar 

  3. Zaluska A, Zaluski L, Ström-Olsen JO (2001) Appl Phys A, Mater Sci Proc 72:157

    Article  CAS  Google Scholar 

  4. Khrussanova M, Terzieva M, Peshev P, Konstanchuk I, Ivanov E (1989) Z Phys Chem (NF) 164:1261

    Article  Google Scholar 

  5. Khrussanova M, Terzieva M, Peshev P (1990) Int J Hydrogen Energy 15:799

    Article  Google Scholar 

  6. Bobet J-L, Akiba E, Nakamura Y, Darriet B (2000) Int J Hydrogen Energy 25:987

    Article  CAS  Google Scholar 

  7. Oelerich W, Klassen T, Bormann R (2001) J Alloys Comp 315:37

    Article  Google Scholar 

  8. Terzieva M, Khrussanova M, Peshev P, Radev D (1995) Int J Hydrogen Energy 20:53

    Article  CAS  Google Scholar 

  9. Sai Raman SS, Davidson DJ, Srivastava ON (1999) J Alloys Comp 292:202

    Article  Google Scholar 

  10. Khrussanova M, Bobet J-L, Terzieva M, Chevalier B, Radev D, Peshev P, Darriet B (2000) J Alloys Comp 307:283

    Article  CAS  Google Scholar 

  11. Bobet J-L, Grigorova E, Khrussanova M, Khristov M, Peshev P (2002) J Alloys Comp 345:280

    Article  CAS  Google Scholar 

  12. Khrussanova M, Grigorova E, Bobet J-L, Khristov M, Peshev P (2004) J Alloys Comp 365:308

    Article  CAS  Google Scholar 

  13. Tanguy B, Soubeyroux JL, Pezat M, Portier J, Hagenmuller P (1976) Mater Res Bull 11:1441

    Article  CAS  Google Scholar 

  14. Darnaudery JP, Darriet B, Pezat M (1983) Int J Hydrogen Energy 8:705

    Article  CAS  Google Scholar 

  15. Dehouche Z, Klassen T, Oelerich W, Goyette J, Bose TK, Schulz R (2002) J Alloys Comp 347:319

    Article  CAS  Google Scholar 

  16. Grigorova E, Khristov M, Khrussanova M, Bobet J-L, Peshev P (2005) Int J Hydrogen Energy 30:1099

    Article  CAS  Google Scholar 

  17. Siegmann HC, Schlapbach L, Brundle CR (1978) Phys Rev Lett 40:972

    Article  CAS  Google Scholar 

  18. Schlapbach L, Shaltiel D, Oelhafen P (1979) Mater Res Bull 14:1235

    Article  CAS  Google Scholar 

  19. Stucki F, Schlapbach L (1980) J Less-Common Met 74:143

    Article  CAS  Google Scholar 

  20. Khrussanova M, Zhecheva E, Stoyanova R, Peshev P, Darriet B, Chambon M (1993) Mater Res Bull 28:377

    Article  CAS  Google Scholar 

  21. Lim SH, Lee JY (1983) Int J Hydrogen Energy 8:369

    Article  CAS  Google Scholar 

  22. Song MY, Lee JY (1983) Int J Hydrogen Energy 8:363

    Article  CAS  Google Scholar 

  23. Boudart M, Delbouille A, Derouane EG, Indovina V, Walters AB (1972) J Am Chem Soc 94:6622

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Dr. E. Zhecheva for her help in magnetic measurements. The financial support of the National Fund of Scientific Investigations of Bulgaria under Contract No X-1407/2004 is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Peshev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khrussanova, M., Mandzhukova, T., Grigorova, E. et al. Hydriding properties of the nanocomposite 85 wt.% Mg–15 wt.% Mg2Ni0.8Co0.2 obtained by ball milling. J Mater Sci 42, 3338–3342 (2007). https://doi.org/10.1007/s10853-006-0586-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0586-6

Keywords

Navigation