Journal of Materials Science

, Volume 42, Issue 10, pp 3537–3543 | Cite as

Dynamic formation of zircon during high temperature deformation of zirconia–silica composites with alumina additions



A three phase ceramic composite of 8 mol% Y2O3 stabilized ZrO2 (YSZ), SiO2, and Al2O3 was evaluated for potential high temperature superplasticity. The amorphous SiO2 content was 5 wt.%, and increasing additions of Al2O3 were made. The effect of varying the Y2O3 stabilizer concentration in ZrO2 was also studied. Samples sintered at 1200 °C contained only YSZ, Al2O3, and amorphous SiO2, but ZrSiO4 formed in the samples above 1300 °C. Mullite (3Al2O· 2SiO2) was not detected in any samples. Specimens of 1 wt.% Al2O3–YSZ/SiO2 had an anomalously high deformation rate of ∼2 × 10−4 s−1 at 1200 °C when compared to YSZ/SiO2 without Al2O3 (∼4 × 10-5 s−1). Higher amounts of Al2O3 additions decreased the strain rate. Extensive deformation of Al2O3 doped YSZ/SiO2 at 1200 °C induced the formation of ZrSiO4 due to enhanced reaction rates. This distributed, yet locally interconnected, zircon phase rapidly eroded the strain rate after ∼60% deformation.


Zircon Al2O3 Y2O3 High Temperature Deformation Initial Strain Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Science Foundation under Grant No. DMR-0207197.


  1. 1.
    Kim BN, Hiraga K, Morita K, Sakka Y (2001) Nature 413:288CrossRefGoogle Scholar
  2. 2.
    Chen I-W, Xue LA (1990) J Am Ceram Soc 73:2585CrossRefGoogle Scholar
  3. 3.
    Morita K, Hiraga K, Kim BN, Sakka Y (2004) Mater Trans 45:2073CrossRefGoogle Scholar
  4. 4.
    Sharif AA, Mecartney ML (2004) J Eur Ceram Soc 24:2041CrossRefGoogle Scholar
  5. 5.
    Suzuki TS, Sakka Y, Morita K, Hiraga K (2000) Scripta Mater 43:705CrossRefGoogle Scholar
  6. 6.
    Kajihara K, Yoshizawa Y, Sakuma T (1995) Acta Metall Mater 43:1235CrossRefGoogle Scholar
  7. 7.
    Sharif AA, Mecartney ML (2003) Acta Mater 51:1633CrossRefGoogle Scholar
  8. 8.
    Dillon RP, Sosa SS, Mecartney ML (2004) Scripta Mater 50:1441CrossRefGoogle Scholar
  9. 9.
    Thompson AW (1972) Metallography 5:366CrossRefGoogle Scholar
  10. 10.
    Ikuhara Y, Yoshida H, Sakuma T (2001) Mater Sci & Eng A A319-321:24CrossRefGoogle Scholar
  11. 11.
    Sakuma T, Ikuhara Y, Takigawa Y, Thavorniti P (1997) Mater Sci & Eng A A234-236:226CrossRefGoogle Scholar
  12. 12.
    Thavorniti P, Ikuhara Y, Sakuma T (1998) J Am Ceram Soc 81:2927CrossRefGoogle Scholar
  13. 13.
    Hassan AAE, Menzler NH, Blass G, Ali ME, Buchkremer HP, Stover D (2002) J Mater Sci 37:3467CrossRefGoogle Scholar
  14. 14.
    Chokshi AH, Yoshida H, Ikuhara Y, Sakuma T (2003) Mater Lett 57:4196CrossRefGoogle Scholar
  15. 15.
    Sakka Y, Ishii T, Suzuki TS, Morita K, Hiraga K (2004) J Eur Cer Soc 24:449CrossRefGoogle Scholar
  16. 16.
    Feighery AJ, Irvine JTS (1999) Solid State Ionics 121:209CrossRefGoogle Scholar
  17. 17.
    Goretta KC, Cruse TA, Koritala RE, Routbort JL, Melendez-martinez JJ, De Arellano-Lopez AR (2001) J Eur Ceram Soc 21:1055CrossRefGoogle Scholar
  18. 18.
    Ondik HM, Mcmurdie HF (eds) (1998) Phase diagrams for zirconium and zirconia systems. The American Ceramic Society, Westerville, p. 254Google Scholar
  19. 19.
    Kolitsch U, Seifert HJ, Ludwig T, Aldinger F (1999) J Mater Res 14:447Google Scholar
  20. 20.
    Yaroshenko V, Wilkinson DS (2000) J Mater Res 15:1358Google Scholar
  21. 21.
    Kanno Y (1989) J Mat Sci 24:2415CrossRefGoogle Scholar
  22. 22.
    Sakka Y, Suzuki TS, Morita K, Nakano K, Hiraga K (2001) Scripta Mater 44:2075CrossRefGoogle Scholar
  23. 23.
    Xue LA, Chen I-W (1992) J Am Ceram Soc 75:1085CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations