Journal of Materials Science

, Volume 42, Issue 13, pp 5046–5056 | Cite as

Microstructural characterization and fracture properties of SiC-based fibers annealed at elevated temperatures



Ceramic matrix composites (CMCs) have been proposed as potential structural materials for application of high temperature technologies. Excellent high temperature performance of CMCs requires that fibers must have high enough thermal stability and sufficient mechanical properties throughout the service life. In order to clarify the correlation between the mechanical properties and the microstructure of SiC-based fibers, SiC-based fibers were annealed at elevated temperatures in Ar for 1 h. After annealing, the fracture strengths on these fibers were evaluated at room temperature by tensile test; the microstructural features were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Furthermore, the fracture mechanics was applied to estimate the fracture toughness and the critical fracture energy of these fibers. As a result, excellent microstructure and mechanical stabilities were observed for SiC fibers with near-stoichiometric composition and high-crystallite structure. Combining the microstructure examination with tensile test indicates that the thermal and mechanical stabilities of SiC fibers at high temperatures were mainly controlled by their crystallization and composition as well as other factors.


Fracture Toughness Fracture Property Compression Residual Stress Excess Carbon Critical Flaw 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kohyama A (2004) Ceramics 39:838 (in Japanese)Google Scholar
  2. 2.
    Naslain R (2004) Compos Sci Technol 64:155CrossRefGoogle Scholar
  3. 3.
    Ohnabe H, Masaki S, Onozuka M, Miyahara K, Sasa T (1999) Compos: Part A 30:489CrossRefGoogle Scholar
  4. 4.
    Ichikawa H (2000) Ann Chim Sci Mat 25:523CrossRefGoogle Scholar
  5. 5.
    Ishikawa T, Kohtoku Y, Kumagawa K, Yamamura T, Nagasawa T (1998) Nature 391:773CrossRefGoogle Scholar
  6. 6.
    Dong S, Katoh Y, Kohyama A (2003) J Am Ceram Soc 86:26CrossRefGoogle Scholar
  7. 7.
    Lee SP, Katoh Y, Park JS, Dong S, Kohyama A, Suyama S, Yoon HK (2001) J Nucl Mater 289:30CrossRefGoogle Scholar
  8. 8.
    Dong SM, Chollon G, Labrugere C, Lahaye M, Guette A, Bruneel JL, Couzi M, Naslain R, Jiang DL (2001) J Mater Sci 36:2371CrossRefGoogle Scholar
  9. 9.
    Havel M, Colomban Ph (2003) J Raman Spectr 34:786CrossRefGoogle Scholar
  10. 10.
    Havel M, Colomban Ph (2004) Compos: Part B 35:139CrossRefGoogle Scholar
  11. 11.
    Bunsell AR, Berger MH (2000) J Euro Ceram Soc 20:2249CrossRefGoogle Scholar
  12. 12.
    Sha JJ, Nozawa T, Park JS, Katoh Y, Kohyama A (2004) J Nucl Mater 329–333:592CrossRefGoogle Scholar
  13. 13.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison Wesley, Reading, MA, p 284–285Google Scholar
  14. 14.
    ASTM D3379-75 (reapproved 1989) Standard test method for tensile strength and Young’s modulus for high-modulus single-filament materialsGoogle Scholar
  15. 15.
    Youngblood GE, Lewinsohn C, Jones RH, Kohyama A (2001) J Nucl Mater 289:1CrossRefGoogle Scholar
  16. 16.
    Shimoo T, Tsukada I, Narisawa M, Seguchi T, Okamura K (1997) J Ceram Soc Jpn 105:559Google Scholar
  17. 17.
    Chollon G, Pailler R, Naslain R, Laanami F, Monthioux M, Olry P (1997) J Mater Sci 32:327CrossRefGoogle Scholar
  18. 18.
    Ichikawa H (2000) Ann Chim Sci Mat 25:523CrossRefGoogle Scholar
  19. 19.
    Ichikawa H, Ishikawa T (2000) In: Kelly A, Zweben C, Chou T (eds) Silicon carbide fibers (organometallic Pyrolysis), Comprehensive composite Materials, vol 1. Elsevier Science Ltd, Oxford, England, pp 107–145Google Scholar
  20. 20.
    Takeda M, Saeki A, Sakamoto J, Imai Y, Ichikawa H (1999) Compos Sci Technol 59:787CrossRefGoogle Scholar
  21. 21.
    Yajima S, Okamura K, Matsuzawa T, Hasegawa Y, Shishido T (1979) Nature 279:706CrossRefGoogle Scholar
  22. 22.
    Sasaki Y, Nishina Y, Sato M, Okamura K (1987) J Mater Sci 22:443CrossRefGoogle Scholar
  23. 23.
    Sacks MD (1999) J Eur ceram soc 19:2305CrossRefGoogle Scholar
  24. 24.
    Eelhaes P, Carmona F (1981) Chem Phys Carbon 17:89Google Scholar
  25. 25.
    Schneider B, Guette A, Naslain R, Cataldi M, Costecalde A (1998) J Mater Sci 33:535CrossRefGoogle Scholar
  26. 26.
    Shimoo T, et al (2002) J Mater Sci 37:4361CrossRefGoogle Scholar
  27. 27.
    Takeda M, Sakamoto J, Imai Y, Ichikawa H (1999) Compos Sci Technol 59:813CrossRefGoogle Scholar
  28. 28.
    Shimoo T, Okamura K, Morita T (2004) J Mater Sci 39:7031CrossRefGoogle Scholar
  29. 29.
    Kumagawa K, Yamaoka H, Shibuya M, Yamakura T (1998) Ceram Eng Sci Proc 19:65CrossRefGoogle Scholar
  30. 30.
    Sawyer LC, Jamieson M, Brikowski D, Haider MI, Chen RT (1987) J Am Ceram Soc 70:798CrossRefGoogle Scholar
  31. 31.
    Mecholsky JJ, Rice RW, Freiman SW (1974) J Am Ceram Soc 57:440CrossRefGoogle Scholar
  32. 32.
    Zhu YT, Blumenthal WR, Taylor ST, Lowe TC (1997) J Am Ceram Soc 80:1447CrossRefGoogle Scholar
  33. 33.
    Thouless MD, Sbaizero O, Sigl LS, Evans AG (1989) J Am Ceram Soc 72:525CrossRefGoogle Scholar
  34. 34.
    Toreki Wm, Batich CD, Sacks MD, Saleem M, Choi GJ, Morrone AA (1994) Compos Sci Technol 51:145CrossRefGoogle Scholar
  35. 35.
    Ramberg CE, Worrell WL (2001) J Am Ceram Soc 84:2607CrossRefGoogle Scholar
  36. 36.
    Mazdiyasni KS, Aangvil A (1985) J Am Ceram Soc 68:C-142CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.International Innovation CenterKyoto UniversityKyotoJapan
  2. 2.Institute of Advanced EnergyKyoto UniversityKyotoJapan

Personalised recommendations