Advertisement

Journal of Materials Science

, Volume 41, Issue 23, pp 7741–7746 | Cite as

The role of partial grain boundary dislocations in grain boundary sliding and coupled grain boundary motion

  • Joshua Monk
  • Brian Hyde
  • Diana Farkas
Article

Abstract

We study the process of grain boundary sliding through the motion of grain boundary dislocations, utilizing molecular dynamics and embedded atom method (EAM) interatomic potentials. For a Σ = 5 [001]{310} symmetrical tilt boundary in bcc Fe, the sliding process was found to occur through the nucleation and glide of partial grain boundary dislocations, with a secondary grain boundary structure playing an important role in the sliding process. While the homogeneous nucleation of these grain boundary dislocations requires shear strain levels higher than 7%, preexisting grain boundary dislocations are shown to glide at applied shear levels of 1.5%. The glide of the dislocations results in coupled motion of the boundary in the directions parallel and perpendicular to itself. Finally, interstitial impurities and vacancies were introduced in the grain boundary to study the effects on the sliding resistance of the boundary. While vacancies and H interstitials act as preferred nucleation sites, C interstitials do not. Both hydrogen and C interstitials stop dislocation glide whereas vacancies do not. A detailed study of the dynamic properties of these dislocations is also presented.

Keywords

Boundary Structure Applied Shear Lattice Dislocation Lower Energy Structure Boundary Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by NSF, Materials Theory.

References

  1. 1.
    Van Swygenhoven H, Caro A Farkas D (2001) Scr Materialia 44(8–9):1513CrossRefGoogle Scholar
  2. 2.
    Pond RC, Hirth JP (1994) Solid State Physics – Adv Res Appl 47:287Google Scholar
  3. 3.
    Van Swygenhoven H, Derlet PA (2001) Phys Rev B 64(22)Google Scholar
  4. 4.
    Hoagland RG, Kurtz R (2002) Philos Mag A – Phy Cond Matter Struct Defects Mech Prop 82(6):1073Google Scholar
  5. 5.
    Farkas D, Curtin WA (2005) MSE&A 412(1–2):316Google Scholar
  6. 6.
    Winning M (2004) Zeitschrift Fur Metallkunde 95(4):233Google Scholar
  7. 7.
    Kurtz RJ, Hoagland R, Hirth JP (1999) Philos Mag A – Phy Cond Matter Struct Defects Mech Prop 79(3):665Google Scholar
  8. 8.
    Sheikh Ali AD (1997) Acta Mater 45(8):3109CrossRefGoogle Scholar
  9. 9.
    Sagalowic L, Clark WAT (1996) Interface Sci 4(1–2):29Google Scholar
  10. 10.
    Bollmann W (1981) Philos Mag A – Phy Cond Matter Struct Defects Mech Prop 43:201Google Scholar
  11. 11.
    Sansoz F, Molinari JF (2005) Acta Mater 53(7):1931Google Scholar
  12. 12.
    Dorfman S, Fuks D, Malbouisson LAC, et al (2003) Computational Mater Sci 27(1–2):199CrossRefGoogle Scholar
  13. 13.
    Chandra N, Dang P (1999) J Mater Sci 34(4):655CrossRefGoogle Scholar
  14. 14.
    Bishop GH Jr, Harrison R, Kwok T, Yip S (1982) J Appl Phys 53:5596CrossRefGoogle Scholar
  15. 15.
    King TAH, Smith DA (1980) Acta Crystallogr A 36:335Google Scholar
  16. 16.
    Wang GJ, Sutton AP, Vitek V (1984) Acta Metallurgica 32(7):1093CrossRefGoogle Scholar
  17. 17.
    Hyde B, Farkas D (2005) Philos Mag 85(32):3795CrossRefGoogle Scholar
  18. 18.
    Geng WT, Freeman AJ, Wu R, Geller CB, Raynolds JE (1999) Phys Rev B 60:7149CrossRefGoogle Scholar
  19. 19.
    Ballo P, Degmova J, Slugen V (2005) Phys Rev B 72(6)Google Scholar
  20. 20.
    Simonelli G, Pasianot R, Savino EJ (1993) Mater Res Soc 291:567Google Scholar
  21. 21.
    Ruda M, Farkas D, Abriata J (2002) Scr Materialia 46(5):349CrossRefGoogle Scholar
  22. 22.
    Ruda M, Farkas D, Abriata J (1996) Phy Rev B 54(14):9765CrossRefGoogle Scholar
  23. 23.
    Campbell GH, Kumar M, King WE, et al (2002) Philos Mag A – Phy Cond Matter Struct Defects Mech Prop 82(8):1573Google Scholar
  24. 24.
    Latapie A, Farkas D (2003) Scr Materialia 48(5):611CrossRefGoogle Scholar
  25. 25.
    Chang JP, Bulatov VV, Yip S (1999) J Computer – Aided Mater Design 6(2–3):165CrossRefGoogle Scholar
  26. 26.
    Chang JP, Bulatov VV, et al (2001) MSE&A 309:160CrossRefGoogle Scholar
  27. 27.
    Cahn JW, Mishin Y, Suzuki A (2006) Philos Mag 86:3965Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringVirginia Tech.BlacksburgUSA

Personalised recommendations