Skip to main content
Log in

Fatigue crack propagation in microcapsule-toughened epoxy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The addition of liquid-filled urea-formaldehyde (UF) microcapsules to an epoxy matrix leads to significant reduction in fatigue crack growth rate and corresponding increase in fatigue life. Mode-I fatigue crack propagation is measured using a tapered double-cantilever beam (TDCB) specimen for a range of microcapsule concentrations and sizes: 0, 5, 10, and 20% by weight and 50, 180, and 460 μm diameter. Cyclic crack growth in both the neat epoxy and epoxy filled with microcapsules obeys the Paris power law. Above a transition value of the applied stress intensity factor ΔK T, which corresponds to loading conditions where the size of the plastic zone approaches the size of the embedded microcapsules, the Paris law exponent decreases with increasing content of microcapsules, ranging from 9.7 for neat epoxy to approximately 4.5 for concentrations above 10 wt% microcapsules. Improved resistance to fatigue crack propagation, indicated by both the decreased crack growth rates and increased cyclic stress intensity for the onset of unstable fatigue-crack growth, is attributed to toughening mechanisms induced by the embedded microcapsules as well as crack shielding due to the release of fluid as the capsules are ruptured. In addition to increasing the inherent fatigue life of epoxy, embedded microcapsules filled with an appropriate healing agent provide a potential mechanism for self-healing of fatigue damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cardoso RJ, Shukla A, Bose A (2002) J Mater Sci 37:603

    Article  CAS  Google Scholar 

  2. Bagheri R, Pearson RA (1996) J Mater Sci 31:4529

    Article  Google Scholar 

  3. Skibo MD, Hertzberg RW, Manson JA, Kim SL (1977) J Mater Sci 12:531

    Article  CAS  Google Scholar 

  4. Paris PC, Gomez MP, Anderson WE (1961) The Trend in Engineering at the University of Washington 13:9

    Google Scholar 

  5. Karger-Kocsis J, Friedrich K (1993) Compos Sci Technol 48:263

    Article  CAS  Google Scholar 

  6. Nagasawa M, Kinuhata H, Koizuka H, Miyamoto K, Tanaka T, Kishimoto H, Koike T (1995) J Mater Sci 30:1266

    Article  CAS  Google Scholar 

  7. McMurray MK, Amagi S (1999) J Mater Sci 34:5927

    Article  CAS  Google Scholar 

  8. Becu L, Maazouz A, Sautereau H, Gerard JF (1997) J Appl Polym Sci 65:2419

    Article  CAS  Google Scholar 

  9. Rey L, Poisson N, Maazouz A, Sautereau H (1999) J Mater Sci 34:1775

    Article  CAS  Google Scholar 

  10. Hayes BS, Seferis JC (2001) Polym Compos 22:451

    Article  CAS  Google Scholar 

  11. Azimi HR, Pearson RA, Hertzberg RW (1996) Polym Eng Sci 36:2352

    Article  CAS  Google Scholar 

  12. Azimi HR, Pearson RA, Hertzberg RW (1995) J Appl Polym Sci 58:449

    Article  CAS  Google Scholar 

  13. Sautereau H, Maazouz A, Gerard JF, Trotignon JP (1995) J Mater Sci 30:1715

    Article  CAS  Google Scholar 

  14. Azimi HR, Pearson RA, Hertzberg RW (1996) J Mater Sci 31:3777

    Article  CAS  Google Scholar 

  15. Brown EN, White SR, Sottos NR (2004) J Mater Sci 39:1703

    Article  CAS  Google Scholar 

  16. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Nature 409:794

    Article  CAS  Google Scholar 

  17. Brown EN, Sottos NR, White SR (2002) Exp Mech 42:372

    Article  CAS  Google Scholar 

  18. Kessler MR, Sottos NR, White SR (2003) Composites Part A 34:743

    Article  Google Scholar 

  19. Brown EN, Kessler MR, Sottos NR, White SR (2003) J Microencapsul 20:719

    Article  CAS  Google Scholar 

  20. Brown EN (2003) In: Fracture and Fatigue of a self-healing polymer composite material, PhD dissertation, University of Illinois at Urbana-Champaign

  21. Rzeszutko AA, Brown EN, Sottos NR (2004) 2003 Proceedings of 5th Undergraduate Research Conf. in Mechanics, University of Illinois at Urbana-Champaign, TAM Report No. 1041, 27

  22. Mostovoy S, Crosley PB, Ripling EJ (1967) J Mater 2:661

    Google Scholar 

  23. Wang WZ, Li CT, Ye FX (2004) Vacuum 73:649

    Article  CAS  Google Scholar 

  24. Blackman BRK, Hadavinia H, Kinloch AJ, Paraschi M, Williams JG (2003) Engng Fract Mech 70:233

    Article  Google Scholar 

  25. Macon DJ, Anderson GL (2002) J Appl Polym Sci 86:1821

    Article  CAS  Google Scholar 

  26. Beres W, Koul AK, Thambraj R (1997) J Test Eval 25:2419

    Google Scholar 

  27. Cammino R, Gosz M, Mostovoy S (2000) In: Proceedings of ASME International Congress and Exposition 415:17

  28. Kessler MR (2002) In: Characterization and performance of a self-healing composite material, PhD dissertation, University of Illinois at Urbana-Champaign

  29. Saxena A, Hudak SJ Jr (1978) Int J Fract 14:453

    Article  Google Scholar 

  30. Karger-Kocsis J, Friedrich K (1992) Colloid Polym Sci 270:549

    Article  CAS  Google Scholar 

  31. Chudnovsky A, Kim A, Bosnyak CP (1992) Int J Fract 55:209

    CAS  Google Scholar 

  32. Irwin GR (1960) Proceedings of 7th Sagamore Ornance Mater. Res. Conf. 4:63

  33. Xiao K, Ye L, Kwok YS (1998) J Mater Sci 33:2831

    Article  CAS  Google Scholar 

  34. Araki W, Adachi T, Gamou M, Yamaji A (2002) Proc I Mech E Part L 216:79

    CAS  Google Scholar 

  35. Endo K, Okada T, Komai K, Kiyota M (1972) Bull Japan Soc Mech Eng 15:1316

    Article  CAS  Google Scholar 

  36. Galvin G, Naylor H (1964) Proc Inst Mech Eng J 179:56

    Google Scholar 

  37. Plumbridge WJ, Ross PJ, Parry JSC (1985) Mater Sci Eng 68:219

    Article  Google Scholar 

  38. Polk C, Murphy W, Rowe C (1975) ASLE Transactions 18:290

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the AFOSR Aerospace and Materials Science Directorate Mechanics and Materials Program (Award No. F49620-00-1-0094), the National Science Foundation (NSF CMS0218863), and Motorola Labs, Motorola Advanced Technology Center, Schaumburg Ill. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the AFOSR or Motorola Labs. The authors would also like to thank Profs. J.S. Moore and P.H. Geubelle of the Autonomic Materials Laboratory of the Beckman Institute of Advanced Science and Technology and Dr. A. Skipor of Motorola Labs for technical support and helpful discussions. Electron microscopy was performed in the Imaging Technology Group, Beckman Institute, of the University of Illinois at Urbana-Champaign, with the assistance of S. Robinson. LAUR-04-2668.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, E.N., White, S.R. & Sottos, N.R. Fatigue crack propagation in microcapsule-toughened epoxy. J Mater Sci 41, 6266–6273 (2006). https://doi.org/10.1007/s10853-006-0512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0512-y

Keywords

Navigation