Journal of Materials Science

, Volume 41, Issue 19, pp 6256–6259 | Cite as

The effect of Sb and Nb on the electrical conductivity of tin dioxide based ceramics

  • D. R. Leite
  • I. O. Mazali
  • E. C. Aguiar
  • W. C. Las
  • M. Cilense


The electrical conductivity of Mn doped SnO2 systems prepared by an organic route (Pechini’s method) has been investigated as a function of antimony and niobium concentration. The conductivity increases with the increase of both concentration ions, however, in a different manner. While the conductivity of niobium doped ceramics increases with the power of 1.6 for the entire range of concentrations studied (0.01–0.7 mol%), the conductivity of antimony doped ceramics increases with the power of 1.9 in the range 0.01–0.05 mol% of Sb; 3.7 in the range 0.05–0.30 mol% and 1.8 in the range 0.30–0.70 mol%. This behavior is attributed to the existence of two stable oxidation states for antimony: Sb3+ and Sb5+, while for niobium there is only one: Nb5+. The power of 3.7 for Sb would be related to the segregation of this ion on the grain boundary accompanied by an additional contribution coming from the substitution of Sn2+ by Sb3+ on the grain surface.


SnO2 Oxygen Vacancy Antimony Sb2O4 Conductivity Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jarzebski ZM, Marton JP (1976) J Electrochem Soc 123:299CCrossRefGoogle Scholar
  2. 2.
    Chopra KL, Major S, Pandya PK (1983) Thin Solid Films 102:1CrossRefGoogle Scholar
  3. 3.
    Fagan JG, Amarakoon VRW (1993) Am Ceram Soc Bull 72:119Google Scholar
  4. 4.
    Olivi P, Souza ECP, Longo E, Varela JA, Bulhões LOS (1993) J Electrochem Soc 140:L81CrossRefGoogle Scholar
  5. 5.
    Cerri JA, Leite ER, Gouvêa D, Longo E, Varela JA (1996) J Am Ceram Soc 79:799CrossRefGoogle Scholar
  6. 6.
    Clarke DR (1999) J Am Ceram Soc 82:485CrossRefGoogle Scholar
  7. 7.
    Bacelar WR, Oliveira MM, Souza VC, Longo E, Leite ER, Varela JA (2002) J Mater Sci: Mater Electron 13:409CrossRefGoogle Scholar
  8. 8.
    Bueno PR, Cassia-Santos MR, Simões LGP, Gomes JW, Longo E, Varela JA (2002) J Am Ceram Soc 85:282CrossRefGoogle Scholar
  9. 9.
    Uematsu K, Kato Z, Uchida N, Saito K (1987) J Am Ceram Soc 70:142CCrossRefGoogle Scholar
  10. 10.
    Szczuko D, Werner J, Oswald S, Behr G, Wetzig K (2001) Appl Surface Sci 179:301CrossRefGoogle Scholar
  11. 11.
    Las WC, Dolet N, Dordor P, Bonnet JP (1993) J Appl Phys 74:6191CrossRefGoogle Scholar
  12. 12.
    Pianaro SA, Bueno PR, Longo E, Varela JA (1995) J Mater Sci Lett 14:692CrossRefGoogle Scholar
  13. 13.
    Gouvêa D, Varela JA, Longo E, Smith A, Bonnet JP (1993) Eur J Solid State Inorg Chem 30:915Google Scholar
  14. 14.
    Cox PA, Egdell RG, Harding C, Patterson WR, Tavener PJ (1982) Surf Sci 123:179CrossRefGoogle Scholar
  15. 15.
    Dyshel DE (1996) Inorg Mat 32:51Google Scholar
  16. 16.
    Cox DF, Fryberger TB, Semancik S (1988) Phys Rev B 38:2072CrossRefGoogle Scholar
  17. 17.
    Vincent CA (1972) J Eletrochem Soc Solid State Sci Technol 119:515CrossRefGoogle Scholar
  18. 18.
    Terrier C, Chatelon JP, Roger JA (1997) J Sol–Gel Sci Technol 10:75CrossRefGoogle Scholar
  19. 19.
    Mazali IO, Las WC, Cilense M (2003) J Mater Sci 38:3325CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • D. R. Leite
    • 1
  • I. O. Mazali
    • 1
  • E. C. Aguiar
    • 1
  • W. C. Las
    • 1
  • M. Cilense
    • 1
  1. 1.Departamento de Físico-QuímicaInstituto de Química – UNESPAraraquaraBrazil

Personalised recommendations