Advertisement

Journal of Materials Science

, Volume 41, Issue 16, pp 5134–5145 | Cite as

Delamination under Hertzian cyclic loading of a glass coating on Ti6al4v for implants

  • J. Pavón
  • E. Jiménez-Piqué
  • M. Anglada
  • E. Saiz
  • A. P. Tomsia
Article

Abstract

In this work, the interfacial response of a glass-based coating on Ti6Al4V to monotonic and cyclic Hertzian (spherical) indentation is investigated. This coating belongs to the SiO2-CaO-MgO-Na2O-K2O-P2O5 system and it is specifically designed to be used as the inner layer of a bioactive bilayer coating with an outer layer of lower SiO2 content to ensure bioactivity. During Hertzian monotonic loading, delamination of the coating occurs, which is revealed in the microscope by the presence of a colour pattern of interference fringes at the interface. Hertzian cyclic loading at maximum loads, P max, lower than the monotonic delamination load, P Del, also generates delamination damage. A plot of P max versus the number of cycles for delamination shows a two-slope curve with a “knee” for P max close to the critical load to induce a radial crack from the interface, P Rc. The analysis of the delamination morphology and the results for different load ratios, R = P min/P max, confirmed the existence of two different delamination mechanisms with a common feature of plastic deformation of the substrate but with a different dependence with the maximum applied load: for P max > P Rc the process is mostly controlled by the presence of the radial cracks (P max dependent), meanwhile, for P max < P Rc radial cracks are not observed and delamination is attributed to the residual stress at the interface induced by the cyclic plastic deformation of the substrate and the elastic recovery of the coating during unloading part.

Keywords

Load Ratio Load Range Radial Crack Monotonic Loading Cyclic Creep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by the Spanish Ministry of Science and Technology through Grant No. MAT202-00368, the Generalitat de Catalunya through the Gaspar de Portolà exchange program, and the National Institutes of Health/National Institutes of Dental and Craniofacial Research through Grant No. IR01DE11289. The authors would like to thank specially Dr. Luis Llanes for valuable discussion. Finally, J. Pavón wishes to thank Colciencias-Colombia for financial sponsorship of his Ph.D. studies.

References

  1. 1.
    Hench L (1991) J Am Ceram Soc 74:1487CrossRefGoogle Scholar
  2. 2.
    Ducheyne P, Hench L, Kagan A, Martens M, Burssens A, Muller JC (1980) J Biomed Mater Res 14:225CrossRefGoogle Scholar
  3. 3.
    Xue W, Tao S, Liu X, Zheng XB, Ding C (2004) Biomaterials 25:415CrossRefGoogle Scholar
  4. 4.
    Gu YW, Khor KA, Cheang P (2003) Biomaterials 24:1603CrossRefGoogle Scholar
  5. 5.
    Lacefield WR (1993) An introduction to bioceramics. World Scientific, Singapore, p 223Google Scholar
  6. 6.
    Chern Lin JH, Shen KS, Ju CP (1995) Mater Chem Phys 41:82Google Scholar
  7. 7.
    Hench L, Anderson Ö (1993) An introduction to bioceramics. World Scientific, Singapore, p 239Google Scholar
  8. 8.
    Donald IW (1993) J Mater Sci 28:2841CrossRefGoogle Scholar
  9. 9.
    Gómez-Vega JM, Saiz E, Tomsia AP (1999) J Biomed Mater Res 46:549CrossRefGoogle Scholar
  10. 10.
    Pazo A, Saiz E, Tomsia AP (1998) Acta Mater 46:2551CrossRefGoogle Scholar
  11. 11.
    Pazo A, Saiz E, Tomsia AP (1998) Ceramic microstructures: control at atomic level. Plenum Press, Berkeley, p 543Google Scholar
  12. 12.
    Hench L, Splinter RJ, Allen WC, Greenlee TK (1971) J Biomed Res Symp 2:117CrossRefGoogle Scholar
  13. 13.
    Brunski JB (1992) Clinic Mater 10:153CrossRefGoogle Scholar
  14. 14.
    Lawn BR (2002) Curr Opin: Solid State Mater Sci 6:229CrossRefGoogle Scholar
  15. 15.
    DeLong R, Douglas WH (1983) J Dent Res 62:32Google Scholar
  16. 16.
    Eberhardt AW, Lewis JL, Keer LM (1991) ASME J Biomed Eng 113:410Google Scholar
  17. 17.
    Lopez-Esteban S, Saiz E, Fujino S, Oku T, Suganuma K, Tomsia AP (2003) J Eur Ceram Soc 23:2921CrossRefGoogle Scholar
  18. 18.
    Oku T, Suganuma K, Wallenberg LR, Tomsia AP, Gomez-Vega JM, Saiz E (2001) J Mat Sci: Mat Med 12:413CrossRefGoogle Scholar
  19. 19.
    Huber MT (1904) Ann Phys (Leipzig) 43:153Google Scholar
  20. 20.
    Miranda P (2003) Diseño de Materiales Multicapa Resistentes al Daño por Contacto, Ph.D. Thesis. Universidad de Extremadura, p 150Google Scholar
  21. 21.
    Frank FC, Lawn BR (1967) Proc R Soc Lond A 299:291CrossRefGoogle Scholar
  22. 22.
    Warren PD (1995) J Eur Ceram Soc 15:201CrossRefGoogle Scholar
  23. 23.
    Chai H, Lawn BR, Wuttiphan SJ (1999) J Mat Res 9:3805Google Scholar
  24. 24.
    Rhee YW, Kim HW, Deng Y, Lawn BR (2001) J Am Ceram Soc 84:1066CrossRefGoogle Scholar
  25. 25.
    Fisher-Cripps AC, Lawn BR, Pajares A, Wei L (1996) J Am Ceram Soc 79:2619CrossRefGoogle Scholar
  26. 26.
    Hecht E, Zajac A (1974) Optics. Addison-Wesley, Massachusetts, p 293Google Scholar
  27. 27.
    Pavón J, Jiménez-Piqué E, Anglada M, Saiz E, Tomsia AP (2006) Acta Mater, in pressGoogle Scholar
  28. 28.
    Suresh S (1998) Fatigue of materials. Cambridge University Press, Cambridge, p 113Google Scholar
  29. 29.
    Ritchie RO (1999) Int J Fract 100:55CrossRefGoogle Scholar
  30. 30.
    McNaney JM, Cannon RM, Ritchie RO (1996) Acta Mater 44:4713CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • J. Pavón
    • 1
  • E. Jiménez-Piqué
    • 1
  • M. Anglada
    • 1
  • E. Saiz
    • 2
  • A. P. Tomsia
    • 2
  1. 1.Departament de Ciencia dels Materials i Enginyeria Metal.lúrgicaUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Materials Sciences DivisionErnest Orlando Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations