Advertisement

Journal of Materials Science

, Volume 42, Issue 11, pp 3914–3922 | Cite as

Experimental characterization of the stress–strain behaviour of cemented paste backfill in compression

  • Mamadou Fall
  • T. Belem
  • S. Samb
  • M. Benzaazoua
Article

Abstract

It is of great interest for economical and security reasons to understand the compressive properties of underground cemented paste backfill. In this paper, the stress–strain behaviours of cemented paste backfill (CPB) subjected to uniaxial compression and conventional triaxial tests are presented and discussed. The effect of CPB basic components, strength, ageing and confining pressure on the deformation behaviour of CPB are evaluated and discussed. The results show that the stress–strain behaviour of CPB is strongly influenced by the confinement, the age and strength of CPB, and its components. The increase in confining pressure leads to a change in the mode of failure, in the stiffness, and an increase in the strength.

Keywords

Uniaxial Compressive Strength Peak Stress Triaxial Test Strain Behaviour Confinement Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge the IRSST (“Institut de Recherche Robert-Sauvé en santé et en Sécurité du Travail”) and FUQAT for funding a part of this work.

References

  1. 1.
    Brakebusch FW (1994) Mining Eng 46:1175Google Scholar
  2. 2.
    Landriault D (1995) Proceedings of 97th annual general meeting of CIM. Rock Mechanics and Strata Control Session. Halifax, Nova Scotia, May 14–18, 1995, pp 229–238Google Scholar
  3. 3.
    Hassani F, Archibal J (1998) Mine backfill, CD-Rom. Canadian Institute of Mine, Metallurgy and Petroleum, CanadaGoogle Scholar
  4. 4.
    Grice T (1998) Proceedings of 2nd annual summit, Mine tailings disposal systems, Brisbane, Australian, 14 ppGoogle Scholar
  5. 5.
    Benzaazoua M, Belem T, Jolette D (2000) Investigation de la stabilité chimique et son impact sur la résistance mécanique des remblais cimentés. Report IRSST, IRSST ed., R-260: 2000, p 158 + AnnexesGoogle Scholar
  6. 6.
    Fall M, Benzaazoua M, Ouellet S (2004) Proceedings 8th international symposia on mining with backfill. In Beijing, China on September 19–21, 2004, pp 193–202Google Scholar
  7. 7.
    Kesimal A, Yilmaz E, Ercikdi B (2004) Cement Concrete Res 34(10):1817CrossRefGoogle Scholar
  8. 8.
    Huynh L, Beattie DA, Fornasiero D, Ralston J (2005) Minerals Eng 19(1):28CrossRefGoogle Scholar
  9. 9.
    Fall M, Belem T, Benzaazoua M (2005) 58th Canadian Geotechnical and 6th Joint IAH-CNC and CGS Groundwater Specialty Conferences, Saskatoon, Saskatchewan, September, 2005Google Scholar
  10. 10.
    Belem T, Benzaazoua M, Bussière B (2000) Proceedings of 53rd Canadian geotechnical conference, Montreal, October, pp 373–380Google Scholar
  11. 11.
    Rankine RM, Rankine KJ, Sivakugan N, Karunasena W, Bloss ML (2001) Proceedings of the 15th international conference on soil mechanics and geotechnical engineering, Istanbul (Turkey), pp 1241–1244Google Scholar
  12. 12.
    Benzaazoua M, Fall M, Belem T (2003) Minerals Eng 17(2):141CrossRefGoogle Scholar
  13. 13.
    Fall M, Benzaazoua M (2003) Proceedings of international conference on tailings & mine waste ‘03, Colorada, USA; A.A. Balkema, Swets & Zeitlinger, Lisse, ISBN 90 5809 593 2, pp 73–86Google Scholar
  14. 14.
    ASTM C-39-96 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens 125Google Scholar
  15. 15.
    ASTM D 4767-02 Standard Test Method for Consolidated Undrained Triaxial CompressionGoogle Scholar
  16. 16.
    Mehta PK (1983) First international conference on fly ash, silica fume, slag and other minerals by-products in concrete, ACI Publication SP-79 Volume I, pp 1–46Google Scholar
  17. 17.
    Taylor HFW (1990) Cement chemistry, 3rd edn. Academic Press, Harcourt Brace Jovanovich, Publishers; ISBN 01-12-683900, 475 ppGoogle Scholar
  18. 18.
    Neville AM (1981) Properties of concrete, 3rd edn. Longman, Essex, EnglandGoogle Scholar
  19. 19.
    Fall M, Bussière B, Belem T, Benzaazoua M, Samb S (2005) 58th Canadian geotechnical and 6th Joint IAH-CNC and CGS groundwater specialty conferences, Saskatoon, Saskatchewan, SeptemberGoogle Scholar
  20. 20.
    Belem T, Fall M, Aubertin M, Li L (2005) Développement d’une méthode intégrée d’analyse de stabilité des chantiers miniers remblayés, Preliminary report, IRSST project, 28 ppGoogle Scholar
  21. 21.
    Manmohan D, Mehta PK (1981) Cement Concrete Aggreg 3(1):63CrossRefGoogle Scholar
  22. 22.
    Hooton RD (2000) Can J Civil Eng 27:754CrossRefGoogle Scholar
  23. 23.
    Abd El.Aziz M, Abd El.Aleem S, Heikal M, El. Didamony H (2005) Cement Concrete Res 35(8):1592CrossRefGoogle Scholar
  24. 24.
    Metha PK (1995) In: Skalny J (ed) Materials science of concrete III. American Ceramic Society, pp 105–130Google Scholar
  25. 25.
    Kesimal A, Ercikdi B, Yilmaz E (2003) Minerals Eng 16(10):1009CrossRefGoogle Scholar
  26. 26.
    Fall M, Benzaazoua M (2005) Cement Concrete Res 35(2):301CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mamadou Fall
    • 1
  • T. Belem
    • 2
  • S. Samb
    • 3
  • M. Benzaazoua
    • 2
  1. 1.Department of Civil EngineeringUniversity of OttawaOttawaCanada
  2. 2.University of Quebec in Abitibi-TemiscamingueAbitibi-TemiscamingueCanada
  3. 3.École polytechnique de LausaneLausanneSwitzerland

Personalised recommendations