Journal of Materials Science

, Volume 41, Issue 24, pp 8166–8172 | Cite as

Electronic transport in dielectrophoretically grown nanowires

  • C. T. Harrower
  • D. R. Oliver


Gold nanoparticles with mean diameter 10–15 nm have been synthesized and stabilized using capping agents in a polar solvent (water) and a non-polar solvent (dodecane). Using two gold bond wires (diameter 0.25 mm and separated by less than 10 μm) as electrodes a sinusoidal driving voltage was applied to the solution. The resulting dielectrophoresis of the solution caused deposition of these nanoparticles at the electrodes and the formation of a wire between the electrodes. Conductance studies of the wire as the final connection formed yielded evidence for low-dimensional transport character in the form of discrete (Landauer) conductance steps. Histogram analysis of the conductance data further supports the conclusion that as the wire forms the capping agents do not always contribute to the electronic transport through the wire.


Gold Nanoparticles Dodecane Tetrachloroaurate Hydrogen Tetrachloroaurate Tetraoctylammonium Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for access to the microscopy facilities in the Department of Mechanical & Industrial Engineering at the University of Manitoba as well as access to equipment and reagents in the laboratories of, as well as advice and encouragement from Dr. T. Hegmann and Dr. S. Kroeker in the Department of Chemistry, University of Manitoba. The work reported has been undertaken in facilities provided with assistance from the Canadian Foundation for Innovation (CFI), the Provincial Government of Manitoba and Western Economic Diversification Canada (WD). The project has been funded by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the University of Manitoba. DRO acknowledges support from the Canadian Institute for Advanced Research (CIAR) Nanoelectronics Initiative.


  1. 1.
    Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278:252CrossRefGoogle Scholar
  2. 2.
    Emberly EG, Kirczenow G (2001) Phys Rev B 64:125318CrossRefGoogle Scholar
  3. 3.
    Emberly EG, Kirczenow G (2001) Phys Rev B 64:235412CrossRefGoogle Scholar
  4. 4.
    Mantooth BA, Weiss PS (2003) Proc IEEE 91:1785CrossRefGoogle Scholar
  5. 5.
    Frens G (1973) Nature 241:20Google Scholar
  6. 6.
    Slot JW, Geuze HJ (1981) J Cell Biol 90:533CrossRefGoogle Scholar
  7. 7.
    Geuze HJ, Slot JW (1985) Eur J Cell Biol 38:87Google Scholar
  8. 8.
    Lin Y, Ge-Bo P, Su GJ, Fang X, Wan L, Bai C (2003) Langmuir 19:10000CrossRefGoogle Scholar
  9. 9.
    Tan YW, Dai XH, Li YF, Zhu DB (2003) J Mater Chem 13:1069CrossRefGoogle Scholar
  10. 10.
    Carotenuto G, Nicolais L (2003) J Mater Chem 13:1038CrossRefGoogle Scholar
  11. 11.
    Brust M, Walker M, Bethell D, Schriffrin DJ, Whyman R (1994) J Chem Soc Chem Commun 15:801CrossRefGoogle Scholar
  12. 12.
    Sarathy KV, Raina G, Yadav GU, Kulkarni GU, Rao CNR (1997) J Phys Chem B 101:9876CrossRefGoogle Scholar
  13. 13.
    Kim DH, Noh J, Hara M, Lee H (2001) B Kor Chem Soc 22:276Google Scholar
  14. 14.
    Faraday M (1857) Philos Trans Roy Soc London 147:145Google Scholar
  15. 15.
    Oliver DR, Harrower CT (2006) Key Eng Mat 314:121CrossRefGoogle Scholar
  16. 16.
    Ritter GX, Wilson JN (1996) In: Handbook of computer vision algorithms in image algebra, CRC Press, Boca Raton, Florida, USA, p. 246Google Scholar
  17. 17.
    Yla-Jaaski A, Kirati N (1992) IEEE Trans Pattern Anal Machine Intell 14:496CrossRefGoogle Scholar
  18. 18.
    Mie G (1908) Annalen der Physik 25:377Google Scholar
  19. 19.
    Huang S, Minami K, Sakaue H, Shingubara S, Takahagi T (2002) J Appl Phys 92:7486CrossRefGoogle Scholar
  20. 20.
    Landauer R (1957) IBM J Res Dev 1:223CrossRefGoogle Scholar
  21. 21.
    Landauer R (1970) Philos Mag 21:863Google Scholar
  22. 22.
    Ott F, Lunney J (1998) Europhys News 13Google Scholar
  23. 23.
    Todorov TD, Sutton AP (1996) Phys Rev B 54:14234CrossRefGoogle Scholar
  24. 24.
    Skorodumova NV, Simak SI (2003) Phys Rev B 67:121404(R)CrossRefGoogle Scholar
  25. 25.
    da Silva EZ, da Silva AJR, Fazzio A (2001) Phys Rev Lett 87:256102CrossRefGoogle Scholar
  26. 26.
    Li CZ, Sha H, Tao NJ (1998) Phys Rev B 58:6775CrossRefGoogle Scholar
  27. 27.
    Tekman E, Ciraci S (1991) Phys Rev B 43:7145CrossRefGoogle Scholar
  28. 28.
    Okamoto M, Takayanagi K (1999) Phys Rev B 60:7808CrossRefGoogle Scholar
  29. 29.
    Agraїt N, Yeyati AL, van Ruitenbeek JM (2003) Phys Rep 377:81CrossRefGoogle Scholar
  30. 30.
    Hermanson KD, Lumsdon SO, Williams JP, Kaler EW, Velev OD (2001) Science 294:1082CrossRefGoogle Scholar
  31. 31.
    Bhatt KH, Velev OD (2004) Langmuir 20:467CrossRefGoogle Scholar
  32. 32.
    Xu B, Tao NJ (2003) Science 301:1221CrossRefGoogle Scholar
  33. 33.
    Scheer E, Joyez P, Esteve D, Urbina C, Devoret MH (1997) Phys Rev Lett 78:3535CrossRefGoogle Scholar
  34. 34.
    Yanson AI, Van Ruitenbeek JM (1997) Phys Rev Lett 79:2157CrossRefGoogle Scholar
  35. 35.
    Dreher M, Pauley F, Heurich J, Cuevas JC, Scheer E, Nielaba P (2005) Phys Rev B 72:075435CrossRefGoogle Scholar
  36. 36.
    de Heer WA, Frank S, Ugarte D (1997) Z Phys B 104:469CrossRefGoogle Scholar
  37. 37.
    García-Martín A, del Valle M, Sáenz JJ, Costa-Krämer JL, Serena PA (2000) Phys Rev B 62:11139CrossRefGoogle Scholar
  38. 38.
    Csonka S, Halbritter A, Mihály G, Jurdik E, Shklyarevskii OI, Speller S, van Kempen H (2003) Phys Rev Lett 90:116803CrossRefGoogle Scholar
  39. 39.
    Itakura K, Yuki K, Kurokawa S, Yasuda H, Sakai A (1999) Phys Rev B 60:11163CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Electrical & Computer EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations