Journal of Materials Science

, Volume 42, Issue 13, pp 5029–5035 | Cite as

Effects of macroscopic graphite particulates on the damping behavior of CuAlMn shape memory alloy

  • Qingzhou Wang
  • Fusheng Han
  • Chunxiang Cui


A novel composite was fabricated using a Cu–11.9Al–2.5Mn (wt%) shape memory alloy as the matrix and macroscopic graphite particulates as the second phase. The damping behavior of the resultant composite was examined in the present study through internal friction measurements. It was found that the net height of the internal friction peak relating to phase transformation decreased in the composite due to the constraining effect of the particulates, but the internal friction background significantly increased with increasing the volume fraction or decreasing the diameter of the particulates, giving rise to an improved damping capacity particularly at low temperatures. It is proposed that the interface damping, dislocation damping and the intrinsic damping of the matrix and the constraint are predominant in the composite.


Shape Memory Alloy Metal Matrix Composite Graphite Particulate Bulk Alloy Bulk Graphite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Humbeeck JV (2003) J Alloys Comp 355:58CrossRefGoogle Scholar
  2. 2.
    Juan San, Nó MLJ (2003) J Alloys Comp 355:65CrossRefGoogle Scholar
  3. 3.
    Vogelsang M, Arsenadet R, Fisher R (1986) Metall Mater Trans A 17:379Google Scholar
  4. 4.
    Christman T, Suresh S (1988) Acta Metall Mater 36:1691CrossRefGoogle Scholar
  5. 5.
    Shieu FS, Sass SL (1991) Acta Metall Mater 39:539CrossRefGoogle Scholar
  6. 6.
    Han FS, Zhu ZG, Liu CS, Gao JC (1999) Metall Mater Trans A 30:771CrossRefGoogle Scholar
  7. 7.
    Han FS, Zhu ZG (1999) J Matter Sci 34:291CrossRefGoogle Scholar
  8. 8.
    Tsoi KA, Stalmans R, Schrooten J (2002) Acta Metall Mater 50:3535Google Scholar
  9. 9.
    Zheng YJ, Cui LS, Zhu D, Yang DZ (2000) Mater Lett 43:91CrossRefGoogle Scholar
  10. 10.
    Cui LS, Zheng YJ, Li Y, Yang DZ (2002) Mater Sci Forum 394–395:519Google Scholar
  11. 11.
    Zheng YJ, Schrooten J, Cui LS, Humbeeck JV (2003) Acta Metall Mater 51:5467Google Scholar
  12. 12.
    Schrooten J, Tsoi KA, Stalmans R, Zheng YJ, Syttner P, In: Wilson AR, Asanuma H (eds) Proceedings of SPIE (Smart Materials MEMS 13–15) (Melbourne, Australia, December, 2000)Google Scholar
  13. 13.
    R. Stalmans, K. Tsoi, J. Schrooten (2000) In: Gobin PF, Friend CM, (eds) Proceedings of SPIE (Fifth European Conference on Smart Structures and Materials 4073, p 88Google Scholar
  14. 14.
    Kavabe H, Kuwahara K (1981) J De Physique 42:C5–941CrossRefGoogle Scholar
  15. 15.
    B. T. Kelly (1981) In: Physics of graphite, Appl. Sci. Publ., London, p 108Google Scholar
  16. 16.
    Wang QZ, Han FS, Wang Q, (2004) Phys Stat Sol (a) 201:2910CrossRefGoogle Scholar
  17. 17.
    Wang YN, Sun WY, Chen XH, Shen HM, Lu BS, (1987) Phys Stat Sol (a) 102:279CrossRefGoogle Scholar
  18. 18.
    Wolfenden A, Wolla JM, (1990) Metal matrix composites theory and experiment TX. Teax A&M University, College StationGoogle Scholar
  19. 19.
    Arsenault RJ, Shi N (1986) Mater Sci Eng 81:175CrossRefGoogle Scholar
  20. 20.
    Parrini L, Schaller R (1996) Acta Metall Mater 44:4881Google Scholar
  21. 21.
    Wang C, Zhu ZG (1998) Acta Metall Sin 739Google Scholar
  22. 22.
    Urreta S, Schaller R (1993) Scrpt Metall 29:165CrossRefGoogle Scholar
  23. 23.
    Wei JN, Li ZB, Han FS (2002) Phys Stat Sol (a) 191:125CrossRefGoogle Scholar
  24. 24.
    Wei JN, Cheng HF, Zhang YF, Han FS, Zhou ZC, Shui JP (2002) Mater Sci Eng A 325:444CrossRefGoogle Scholar
  25. 25.
    Nelson DJ, Hancock JW (1978) J Mater Sci 13:2429CrossRefGoogle Scholar
  26. 26.
    Shore NNK, Ghosh A, Agarwal BD (1982) J Reinforced Plast Compos 1:353CrossRefGoogle Scholar
  27. 27.
    Chawla KK, (1978) Composite materials: science and engineering. Springer, New YorkGoogle Scholar
  28. 28.
    Lazan BJ, (1968) Damping of materials and members in structural mechanics. Pergamon press, Oxford p 38Google Scholar
  29. 29.
    Rawal SP, Misra MS (1986) Role of interfaces on material damping, Rath BB, Misra MS (eds) Materials park, ASM, Ohio, p 43Google Scholar
  30. 30.
    “Nonferrous Alloys and Pure Metals, Metallic Manual”, Version 9, American Metal Association, p 525 (in Chinese)Google Scholar
  31. 31.
    Li Y, Cui LS, Xu HB, Yang DZ (2003) Metall Mater Trans A 34:219CrossRefGoogle Scholar
  32. 32.
    Parthenios J, Psarras GC, Galiotis C (2001) Composites A 32:1735CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Key Laboratory of Materials Physics, Institute of Solid State PhysicsChinese Academy of SciencesHefeiChina
  2. 2.School of Materials Science and EngineeringHebei University of TechnologyTianjinChina

Personalised recommendations